Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72998
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱清良(Ching-Liang Chu)
dc.contributor.authorYu-Huan Chenen
dc.contributor.author陳羽歡zh_TW
dc.date.accessioned2021-06-17T07:13:18Z-
dc.date.available2024-08-26
dc.date.copyright2019-08-26
dc.date.issued2019
dc.date.submitted2019-07-17
dc.identifier.citation1. Kino K, Yamashita A, Yamaoka K, Watanabe J, Tanaka S, Ko K, et al. Isolation
and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. Journal of Biological Chemistry. 1989;264(1):472-8.
2. Tanaka S, Ko K, Kino K, Tsuchiya K, Yamashita A, Murasugi A, et al. Complete
amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions. Journal of Biological Chemistry. 1989;264(28):16372-7.
3. Yeh C-H, Chen H-C, Yang J-J, Chuang W-I, Sheu F. Polysaccharides PS-G and
protein LZ-8 from Reishi (Ganoderma lucidum) exhibit diverse functions in regulating murine macrophages and T lymphocytes. Journal of agricultural and food chemistry. 2010;58(15):8535-44.
4. Lin C-C, Yu Y-L, Shih C-C, Liu K-J, Ou K-L, Hong L-Z, et al. A novel adjuvant
Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunology, Immunotherapy. 2011;60(7):1019.
5. Lin YL, Liang YC, Tseng YS, Huang HY, Chou SY, Hseu RS, et al. An
immunomodulatory protein, Ling Zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and MAPK pathways. J Leukoc Biol. 2009;86(4):877-89.
6. Ou C-C, Hsiao Y-M, Hou T-Y, Wu M-F, Ko J-L. Fungal immunomodulatory
proteins alleviate docetaxel-induced adverse effects. Journal of Functional Foods. 2015;19:451-63.
7. Giepmans BN, van IJzendoorn SC. Epithelial cell–cell junctions and plasma
membrane domains. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2009;1788(4):820-31.
8. Lee SH. Intestinal permeability regulation by tight junction: implication on
inflammatory bowel diseases. Intestinal research. 2015;13(1):11-8.
9. Norouzinia M, Chaleshi V, Alizadeh AHM, Zali MR. Biomarkers in
inflammatory bowel diseases: insight into diagnosis, prognosis and treatment. Gastroenterology and hepatology from bed to bench. 2017;10(3):155.
10. Xiong Y, Wang C, Shi L, Wang L, Zhou Z, Chen D, et al. Myosin Light Chain
Kinase: A Potential Target for Treatment of Inflammatory Diseases. Frontiers in pharmacology. 2017;8:292.
11. Orbán E, Szabó E, Lotz G, Kupcsulik P, Páska C, Schaff Z, et al. Different
expression of occludin and ZO-1 in primary and metastatic liver tumors. Pathology & Oncology Research. 2008;14(3):299-306.
12. Paris L, Tonutti L, Vannini C, Bazzoni G. Structural organization of the tight
junctions. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2008;1778(3):646-59.
13. Cario E. Barrier-protective function of intestinal epithelial Toll-like receptor 2.
Mucosal immunology. 2008;1(1s):S62.
14. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and
immune homeostasis. Nature Reviews Immunology. 2014;14(3):141.
15. Zhang L-j, Gallo RL. Antimicrobial peptides. Current Biology. 2016;26(1):R14-
R9.
16. Zasloff M. Antimicrobial peptides of multicellular organisms. nature.
2002;415(6870):389.
17. Cobo E, Chadee K. Antimicrobial human β-defensins in the colon and their role
in infectious and non-infectious diseases. Pathogens. 2013;2(1):177-92.
18. Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine.
Nature Reviews Immunology. 2012;12(7):503.
19. Kolls JK, McCray Jr PB, Chan YR. Cytokine-mediated regulation of
antimicrobial proteins. Nature Reviews Immunology. 2008;8(11):829.
20. Chassaing B, Aitken JD, Malleshappa M, Vijay‐Kumar M. Dextran sulfate
sodium (DSS)‐induced colitis in mice. Current protocols in immunology. 2014;104(1):15.25. 1-15.25. 14.
21. Mourad FH, Yau Y, Wasinger VC, Leong RW. Proteomics in inflammatory bowel
disease: approach using animal models. Digestive diseases and sciences. 2017;62(9):2266-76.
22. Oh SY, Cho K-A, Kang JL, Kim KH, Woo S-Y. Comparison of experimental
mouse models of inflammatory bowel disease. International journal of molecular medicine. 2014;33(2):333-40.
23. Kim JJ, Shajib MS, Manocha MM, Khan WI. Investigating intestinal
inflammation in DSS-induced model of IBD. JoVE (Journal of Visualized Experiments). 2012(60):e3678.
24. Rayner BS, Love DT, Hawkins CL. Comparative reactivity of myeloperoxidase-
derived oxidants with mammalian cells. Free Radical Biology and Medicine. 2014;71:240-55.
25. Mancini S, Mariani F, Sena P, Benincasa M, Roncucci L. Myeloperoxidase
expression in human colonic mucosa is related to systemic oxidative balance in healthy subjects. Redox Report. 2017;22(6):399-407.
26. Chami B, Martin NJ, Dennis JM, Witting PK. Myeloperoxidase in the inflamed
colon: A novel target for treating inflammatory bowel disease. Archives of biochemistry and biophysics. 2018;645:61-71.
27. Aratani Y. Myeloperoxidase: its role for host defense, inflammation, and
neutrophil function. Archives of biochemistry and biophysics. 2018;640:47-52.
28. Zhao S, Gong Z, Zhou J, Tian C, Gao Y, Xu C, et al. Deoxycholic acid triggers
NLRP3 inflammasome activation and aggravates DSS-induced colitis in mice. Frontiers in immunology. 2016;7:536.
29. Zou X, Ji J, Wang J, Qu H, Shu D, Guo F, et al. Dextran sulphate sodium (DSS)
causes intestinal histopathology and inflammatory changes consistent with increased gut leakiness in chickens. British poultry science. 2018;59(2):166-72.
30. Wang K, Li Y-f, Lv Q, Li X-m, Dai Y, Wei Z-f. Bergenin, acting as an agonist of
PPARγ, ameliorates experimental colitis in mice through improving expression of SIRT1, and therefore inhibiting NF-κB-mediated macrophage activation. Frontiers in pharmacology. 2018;8:981.
31. Cao M, Wang P, Sun C, He W, Wang F. Amelioration of IFN-γ and TNF-α-
induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS One. 2013;8(5):e61944.
32. Chen Q, Chen O, Martins IM, Hou H, Zhao X, Blumberg JB, et al. Collagen
peptides ameliorate intestinal epithelial barrier dysfunction in immunostimulatory Caco-2 cell monolayers via enhancing tight junctions. Food & function. 2017;8(3):1144-51.
33. Capaldo CT, Nusrat A. Cytokine regulation of tight junctions. Biochimica et
Biophysica Acta (BBA)-Biomembranes. 2009;1788(4):864-71.
34. Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target?
Nature reviews Gastroenterology & hepatology. 2017;14(1):9.
35. Al-Sadi R, Boivin M, Ma T. Mechanism of cytokine modulation of epithelial
tight junction barrier. Frontiers in bioscience: a journal and virtual library. 2009;14:2765.
36. Sun S-C. Non-canonical NF-κB signaling pathway. Cell research. 2011;21(1):71.
37. Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring
Harbor perspectives in biology. 2009;1(6):a001651.
38. Huang W-C, Hung M-C. Beyond NF-κB activation: nuclear functions of IκB
kinase α. Journal of biomedical science. 2013;20(1):3.
39. Horino J, Fujimoto M, Terabe F, Serada S, Takahashi T, Soma Y, et al.
Suppressor of cytokine signaling-1 ameliorates dextran sulfate sodium-induced
colitis in mice. International Immunology. 2008;20(6):753-62.
40. Van Hung T, Suzuki T. Guar gum fiber increases suppressor of cytokine
signaling‐1 expression via toll‐like receptor 2 and dectin‐1 pathways, regulating
inflammatory response in small intestinal epithelial cells. Molecular nutrition &
food research. 2017;61(10):1700048.
41. Shin HS, Zhao Z, Satsu H, Totsuka M, Shimizu M. Synergistic effect of tumor
necrosis factor-alpha and hydrogen peroxide on the induction of IL-8 production
in human intestinal Caco-2 cells. Inflammation. 2011;34(5):440-7.
42. Cario E, Gerken G, Podolsky D. Toll-like receptor 2 controls mucosal
inflammation by regulating epithelial barrier function. Gastroenterology.
2007;132(4):1359-74.
43. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R.
Recognition of commensal microflora by toll-like receptors is required for
intestinal homeostasis. Cell. 2004;118(2):229-41.
44. Cario E. Toll‐like receptors in inflammatory bowel diseases: a decade later.
Inflammatory bowel diseases. 2010;16(9):1583-97.
45. Kordjazy N, Haj-Mirzaian A, Haj-Mirzaian A, Rohani MM, Gelfand EW, Rezaei
N, et al. Role of toll-like receptors in inflammatory bowel disease. Pharmacological research. 2018;129:204-15.
46. Sahasrabudhe NM, Schols HA, Faas MM, de Vos P. Arabinoxylan activates Dectin‐1 and modulates particulate β‐glucan‐induced Dectin‐1 activation. Molecular nutrition & food research. 2016;60(2):458-67.
47. Vogt LM, Meyer D, Pullens G, Faas MM, Venema K, Ramasamy U, et al. Toll-like receptor 2 activation by β2→ 1-fructans protects barrier function of T84 human intestinal epithelial cells in a chain length–dependent manner. The Journal of nutrition. 2014;144(7):1002-8.
48. Cohen‐Kedar S, Baram L, Elad H, Brazowski E, Guzner‐Gur H, Dotan I. Human intestinal epithelial cells respond to β‐glucans via Dectin‐1 and Syk. Eur J Immunol. 2014;44(12):3729-40.
49. Saegusa S, Totsuka M, Kaminogawa S, Hosoi T. Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acid. FEMS Immunology & Medical Microbiology. 2004;41(3):227-35.
50. Tu J, Xu Y, Xu J, Ling Y, Cai Y. Chitosan nanoparticles reduce LPS-induced inflammatory reaction via inhibition of NF-κB pathway in Caco-2 cells. International journal of biological macromolecules. 2016;86:848-56.
51. Hoffmann E, Dittrich‐Breiholz O, Holtmann H, Kracht M. Multiple control of interleukin‐8 gene expression. Journal of leukocyte biology. 2002;72(5):847-55.
52. Weber CR, Raleigh DR, Su L, Shen L, Sullivan EA, Wang Y, et al. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. Journal of Biological Chemistry. 2010;285(16):12037-46.
53. Guo K, Ren J, Gu G, Wang G, Gong W, Wu X, et al. Hesperidin Protects Against Intestinal Inflammation By Restoring Intestinal Barrier Function and Up Regulating Treg Cells. Molecular nutrition & food research. 2019:1800975.
54. Sudirman S, Hsu Y-H, He J-L, Kong Z-L. Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodium-induced colitis in mice. PLoS One. 2018;13(10):e0205252.
55. Juuti-Uusitalo K, Klunder LJ, Sjollema KA, Mackovicova K, Ohgaki R, Hoekstra D, et al. Differential effects of TNF (TNFSF2) and IFN-γ on intestinal epithelial cell morphogenesis and barrier function in three-dimensional culture. PLoS One. 2011;6(8):e22967.
56. Andrews C, McLean MH, Durum SK. Cytokine Tuning of intestinal epithelial Function. Frontiers in immunology. 2018;9.
57. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker H-C, Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. The Journal of Immunology. 2000;164(2):966-72.
58. Bolte G, Wolburg H, Beuermann K, Stocker S, Stern M. Specific interaction of food proteins with apical membranes of the human intestinal cell lines Caco-2 and T84. Clinica chimica acta. 1998;270(2):151-67.
59. Berg KC, Eide PW, Eilertsen IA, Johannessen B, Bruun J, Danielsen SA, et al. Multi-omics of 34 colorectal cancer cell lines-a resource for biomedical studies. Molecular cancer. 2017;16(1):116.
60. Taupin D, Podolsky DK. Trefoil factors: initiators of mucosal healing. Nature reviews Molecular cell biology. 2003;4(9):721.
61. Buda A, Jepson MA, Pignatelli M. Regulatory function of trefoil peptides (TFF) on intestinal cell junctional complexes. Cell communication & adhesion. 2012;19(5-6):63-8.
62. Aamann L, Vestergaard EM, Grønbæk H. Trefoil factors in inflammatory bowel disease. World journal of gastroenterology: WJG. 2014;20(12):3223.
63. Lin N, Xu L-f, Sun M. The protective effect of trefoil factor 3 on the intestinal tight junction barrier is mediated by toll-like receptor 2 via a PI3K/Akt dependent mechanism. Biochemical and biophysical research communications. 2013;440(1):143-9.
64. Podolsky DK, Gerken G, Eyking A, Cario E. Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency. Gastroenterology. 2009;137(1):209-20.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72998-
dc.description.abstract靈芝蛋白 (Ling-Zhi 8, LZ-8) 為一種蕈菇類免疫調節蛋白 (fungal immunomodulatory protein, FIP),根據研究已知LZ-8對於免疫細胞有活化、調控及增生的作用,LZ-8可促使調節性T細胞的增生,而這群調節性T細胞有助於延緩葡聚糖硫酸 (dextran sulfate sodium, DSS) 後所誘發的腸炎情況。除了在免疫細胞上的研究,發現LZ-8亦對於腸細胞有一定的影響,例如:研究發現LZ-8有助於保護腸道細胞的完整性,免於化療藥物剋癌易所造成腸道細胞的破壞。因此不只是對於免疫細胞有作用,LZ-8對於腸道表皮細胞亦可能有影響。在發炎性腸道疾病 (inflammatory bowel disease, IBD) 中,眾多促炎性細胞因子 (pro-inflammatory cytokines) 會使腸道表皮細胞凋亡,造成細胞間的緊密連接蛋白 (tight junction) 破壞,進而改變腸細胞通透性及完整性。腸道細胞間通透性增加會使原本位於固有層的免疫細胞直接接觸共生菌或是抗原等,促使免疫細胞活化、分泌過多促延性細胞因子,導致發炎情形不斷。根據研究結果,我們發現LZ-8在促炎性細胞因子破壞腸道表皮細胞的情況下,LZ-8對於腸細胞緊密連接蛋白有強化作用,可增進腸細胞完整性,又腸道表皮細胞完整性對於發炎性腸道疾病具有重要的角色,我們認為LZ-8對於發炎性腸道疾病可能具有延緩發炎的效果,可能透過影響緊密接連蛋白而延緩腸道細胞損傷。結果顯示其中LZ-8對於緊密連接蛋白的機轉是透過降低肌球蛋白輕鏈激酶(myosin light chain kinase) 合成,進而降低促炎性細胞因子對腸道表皮細胞的破壞。zh_TW
dc.description.abstractLing-Zhi 8 (LZ-8), known as a fungal immunomodulatory protein (FIP), is isolated from Ganoderma lucidium. LZ-8 has ability to activate, expand and regulate immune cells. Recently, LZ-8 has been shown to induce regulatory T cell (Treg) expansion and these Treg cells alleviate intestinal inflammation in mouse colitis model. In addition, LZ-8 may inhibit the growth of some types of cancer cell. While many LZ-8 studies have been done in immune and cancer cells, the researches of LZ-8 in epithelial cells are rare. In this study, we explore the effect of LZ-8 on intestinal epithelial cells (IECs) and focus on tight junctions, which form intestinal barrier between lumen and lamina propia. According to our preliminary data, LZ-8 may increase the expression of tight junction proteins such as occludin and ZO-1 and protect IECs against pro-inflammatory cytokine-induced barrier dysfunction. The mechanism for this effect is through downregulating synthesis of myosin light chain kinase which further inhibits tight junction protein from damaging. Since the integrity of IECs is critical in the pathogenesis of IBD, we will examine the possible function of LZ-8 on IECs in a mouse IBD model.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:13:18Z (GMT). No. of bitstreams: 1
ntu-108-R06449014-1.pdf: 30557665 bytes, checksum: 9daa880d44433fa685c73b53e8acf0f3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
目錄 IV
圖表目錄 (List of figures) VI
一、背景介紹 (Introduction) 1
1. 靈芝蛋白 (Ling-Zhi 8, LZ-8) 1
2. 腸道表皮細胞 (Intestinal epithelial cell, IEC) 1
3. 發炎性腸道疾病 (Inflammatory bowel disease, IBD) 3
4. 緊密連接蛋白 (Tight junction protein, TJ) 4
5. 抗微生物肽 (Antimicrobial peptides/proteins, AMPs) 5
二、研究動機 (Rationale) 7
三、材料與方法 (Materials and methods) 8
1. 細胞培養 (Cell culture) 8
1.1 使用細胞株以及相關試劑 8
1.2 細胞培養方式 8
2. 細胞生存試驗 (Cell viability assay) 9
3. 跨上皮電阻 (Transepithelial electrical resistance, TEER) 9
4. 通透性實驗 (Permeability assay) 9
5. 免疫螢光染色 (Immunofluorescence staining, IF) 10
6. 細胞蛋白萃取 (Protein Extraction) 及西方墨點法 (Western blot analysis) 11
6.1 細胞蛋白萃取 11
6.2 膠體製備 (SDS-PAGE preparation) 12
6.3 電泳 (Electrophoresis) 12
6.4 轉漬 (Transfer) 13
6.5 阻攔 (Blocking) 13
6.6 顯影 (Detection) 13
7. RNA純化 (RNA extraction) 及核酸序列定量偵測系統(Real-time PCR) 14
8. 葡聚糖硫酸誘發腸炎小鼠模式 (Dextran sulfate sodium induced colitis mice model) 15
8.1 體重流失 (Weight loss) 16
8.2 腸子長度 (Length of intestines) 16
8.3 骨髓過氧化酵素活性試驗 (Myeloperoxidase activity assay, MPO) 16
8.4 緊密連接蛋白 (Tight junction protein, TJ) 16
8.5 蘇木精-伊紅染色 (Hematoxylin and eosin staining, H&E staining) 16
9. 統計分析 (Statistical analysis) 17
四、結果 (Results) 18
五、討論 (Discussion) 33
六、圖表 (Figures) 37
七、參考文獻 (References) 58
八、附件 (Supplements) 64
附件一:名稱縮寫 64
附件二、引子序列 (Real-Time pcr primers) 64
dc.language.isozh-TW
dc.title探討靈芝蛋白對於腸道表皮細胞完整性的影響zh_TW
dc.titleStudy the effect of Ling-Zhi 8 (LZ-8) on integrity of intestinal epithelial cell (IEC)en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余佳慧(Linda Chia-Hui Yu),陳俊任(Chun-Jen Chen)
dc.subject.keyword蕈菇類免疫調節蛋白,腸道表皮細胞,發炎性腸道疾病,緊密連接蛋白,肌球蛋白輕鍊激?,zh_TW
dc.subject.keywordling-Zhi 8(LZ-8),intestinal epithelial cell,inflammatory bowel disease,tight junction protein,myosin light chain kinase,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201901585
dc.rights.note有償授權
dc.date.accepted2019-07-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
29.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved