請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72992
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 任立中(Li-Chung Jen) | |
dc.contributor.author | Wen-Hao Han | en |
dc.contributor.author | 韓文豪 | zh_TW |
dc.date.accessioned | 2021-06-17T07:13:04Z | - |
dc.date.available | 2020-01-01 | |
dc.date.copyright | 2019-07-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-17 | |
dc.identifier.citation | 1. Bulteel, K. (2018). Multivariate time series, vector autoregressive models and dynamic networks in psychology: Extensions and reflections.
2. Chan, W. & Tse, Y. (1993). Price-volume relation in stocks: A multiple time series analysis on the Singapore market. Asia Pacific J Manage, 10: 39. https://doi.org/10.1007/BF01732223 3. Chen, Y. C. (2017). A Tutorial on Kernel Density Estimation and Recent Advances. Department of Statistics, University of Washinton. 4. Cox, D.R. and Snell, E.J. (1989) Analysis of Binary Data. Second Edition. Chapman & Hall. 5. Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). Increasing Speed of Processing With Action Video Games. Current Directions in Psychological Science, 18(6), 321–326. https://doi.org/10.1111/j.1467-8721.2009.01660.x 6. Epps, T. W. and Epps, M. L. (1976). The stochastic dependence of security price changes and transaction volumes: implications for the mixture-of-distribution hypothesis. Econometrica, 44, 305-321. 7. Hu, Y. (2013). Extreme Value Mixture Modelling with Simulation Study and Applications in Finance and Insurance. 8. Kullbach, S. (1959). Information Theory and Statistics. Wiley, New York. 9. Mudelsee, M. (2003). Estimating Pearson’s Correlation Coefficient with Bootstrap Confidence Interval from Serially Dependent Time Series. Mathematical Geology, 35(6). 10. Qin, X., Li, Y., Shen, C., Zhang, Z., & Zeng, X. (2016). The Correlation Analysis of Clean Energy Output Based on Nonparametric Kernel Density Estimation Probability Models. 11. Rui, T., Yang, Z., Zhou, Y., Fang, H., Zhu, J. (2013) Target Detection Based on Kernel Density Estimation Combined with Correlation Coefficient. In: Huet B., Ngo CW., Tang J., Zhou ZH., Hauptmann A.G., Yan S. (eds) Advances in Multimedia Information Processing – PCM 2013. PCM 2013. Lecture Notes in Computer Science, vol 8294. Springer, Cham 12. Samavati, H. (1987). A multivariate time series analysis of commodity, money, and credit markets. Retrospective Theses and Dissertations. 8588. 13. Tauchen, G. and Pitts, M. (1983). The price variability-volume relationship on speculative markets, Econometrica, 51, 485-505. 14. Tiao, G. C., Tsay, R. S. (1983). Multiple time series modeling and extended sample cross-correlations. JBES, 43-59. 15. Todeschini, R. (1997). Data correlation, number of significant principal components and shape of molecules. The K correlation index. Analytica Chimica Acta, 348(1-3), 419-430. 16. Yuan, N., Xoplaki, E., Zhu, C. & Luterbacher, J. (2016). A novel way to detect correlations on multi-time scales, with temporal evolution and for multi-variables. Scientific Reports, 6. 17. 王軍波、鄧述慧(1999)。利率、成交量對股價波動的影響——GARCH修正模型的應用。系统工程理論與實踐,第19卷第9期,49-57。 18. 張眾卓、王祝三(民102)。臺灣時間序列與橫斷面股票報酬之研究:不同模型設定、投資組合建構以及樣本選擇下之再檢測。經濟研究 (Taipei Economic Inquiry),第四十九卷第一期,31-88。 19. 連偉志(民100)。台灣股價指數時間序列之研究(碩士論文)。取自臺灣博碩士論文系統。(永久網址:https://hdl.handle.net/11296/uw2nwf) 20. 楊踐為、李家豪、類惠貞(民96)。應用時間序列分析法建構台灣證券市場之預測交易模型。中華管理評論國際學報,第十卷第三期。 21. 葉小蓁(民95)。時間序列分析與應用。臺北市:三民。 22. 蔡麗茹、黃凱文、陳美菁、林容如(民103)。配對交易策略績效探討-以台積電、聯電為例。管理實務與理論研究,第八卷第二期,70-90 23. 藍慶芳(民102)。運用配對交易於台灣股票期貨之實證研究。朝陽科大。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72992 | - |
dc.description.abstract | 若將個股成交量定義成「事件」性質的變數,則從事件的角度而言,在單一的時間點可能沒有發生,也可能發生了很多次。而且當這樣的事件變數有兩個以上時,兩事件之間也很有可能具有時間上的延遲反應。因此若要研究其之間真實的相關性,以固定的時間間距(time span)整合資料、以核密度估計(KDE)取得較理想的密度呈現、多元時間序列分析等方法或可進行嘗試。
本文使用臺灣證券交易所官網上,臺積電與聯電十年(2009~2018)的股票與成交量日資料。透過相關係數拔靴法信賴區間與T檢定選出合適的核密度估計帶寬(bandwidth)與時間間距,以此建立多種情境組合並進行VARIMA模型配適。結論發現使用核密度估計或是時間間距皆可以使變項之間的相關性更為接近真實情形,後續的VARIMA模型建置也會有更好的模型解釋力。同時在所有情境組合中,VARIMA(1,1,2)模型具有最佳的解釋力,因此其可作為以此二家公司股票進行配對交易時的策略參考。 | zh_TW |
dc.description.abstract | If stock volumes are defined by “event”, they may happen many times or not to happen in one single time point at the aspect of event. Also, when there are two or more event variables like that in the dataset, the reaction of delay will probably happen between them. Therefore, if we want to figure out the true correlation between each two of them, methods like using same time span to integrate data, using kernel density estimation (KDE) to gain optimal density, or multivariate time series analysis can be used to try and test.
Dataset of this study is the ten year (2009~2018) daily price and volume data of TSMC (Taiwan Semiconductor Manufacturing Company, Limited) and UMC (United Microelectronics Corporation), retrieved from the official website of Taiwan Stock Exchange. By using correlation bootstrap confidence intervals and T-tests, the study can select the appropriate bandwidths and time spans. After that, the study constructs different situations of data transformation by the former result, and fit VARIMA models in each situation. In conclusion, using KDE or time span can both make correlations of variables closer to the real, and the following VARIMA model can have better explanation. Meanwhile, VARIMA(1,1,2) model explained the best among all the situations in this empirical research, so it can be a reference of pairs trading strategies of the two companies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:13:04Z (GMT). No. of bitstreams: 1 ntu-108-R06h41005-1.pdf: 1571460 bytes, checksum: 32a345b633c42c061414173a4f62be44 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 2
誌謝 3 中文摘要 4 英文摘要 5 目錄 7 圖目錄 9 表目錄 10 第一章 序論 11 1.1 研究背景 11 1.2 研究動機 11 1.3 研究目的與架構 15 第二章 文獻回顧 16 2.1 股價與成交量 16 2.2 核密度估計 16 2.3 相關性指標 18 2.4 多元時間序列模型 18 第三章 研究方法 20 3.1 核密度估計 20 3.2 相關係數的拔靴法信賴區間 (帶寬) 21 3.3 T檢定 (時間間距) 23 3.4 多元時間序列分析 24 第四章 實證研究(以台積電與聯電的股價與成交量為例) 26 4.1 資料選擇與整理 26 4.2 決定合適的帶寬與時間間距 28 4.3 以多元時間序列分析進行模型比較 32 第五章 結論 36 5.1 實證研究相關 36 5.2 研究限制 37 5.3 未來方向 37 參考文獻 38 附錄:實證研究之多元時間序列分析舉例 41 | |
dc.language.iso | zh-TW | |
dc.title | 不同時間間距下,核密度帶寬估計對於時間序列相關性的影響:以臺積電與聯電的股價與成交量為例 | zh_TW |
dc.title | The Effect of Time Series Correlation by Using Different Time Spans and KDE Bandwidths – A Case Study of the Price and Volume Data of TSMC and UMC | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡政安,林郁翔 | |
dc.subject.keyword | 股價,成交量,相關係數,時間間距,核密度估計,多元時間序列分析,拔靴法信賴區間,VARIMA模型, | zh_TW |
dc.subject.keyword | stock price,stock volume,correlation coefficient,time span,kernel density estimation,multivariate time series analysis,bootstrap confidence interval,VARIMA model, | en |
dc.relation.page | 59 | |
dc.identifier.doi | 10.6342/NTU201901385 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-18 | |
dc.contributor.author-college | 共同教育中心 | zh_TW |
dc.contributor.author-dept | 統計碩士學位學程 | zh_TW |
顯示於系所單位: | 統計碩士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。