請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72957完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韋文誠(Wen-Cheng J. Wei) | |
| dc.contributor.author | Ting-Yi Yang | en |
| dc.contributor.author | 楊庭懿 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:11:43Z | - |
| dc.date.available | 2029-07-18 | |
| dc.date.copyright | 2019-08-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-19 | |
| dc.identifier.citation | 1. M. Zhou, L. Ge, H. Chen, L. Guo, Effect of Transition Metal Oxides Doping on Ce0.9Sm0.05Nd0.05O1.95 Solid Electrolyte Materials, J. Adv. Ceram., 1 (2012) 150-156.
2. Z. Gao, X. Liu, B. Bergman, Z. Zhao, Enhanced Ionic Conductivity of Ce0.8Sm0.2O2−δ by Sr Addition, J. Power Sources, 208 (2012) 225-231. 3. Y.-C. Wu, C.-H. Chien, G. Xu, Conductivity and Microstructure Analysis of Ceria Materials Doped with Multiple Elements, Ceram. Int., 43 (2017) S747-S757. 4. Y.-C. Wu, Y.-Y. Liao, Effect of Ca2+ and Sr2+ Doping on the Microstructure and Cell Performance of Samaria-doped Ceria Electrolytes Used in Solid Oxide Fuel Cells, Int. J. Hydrogen Energy, 41 (2016) 13591-13602. 5. S. Ramesh, K.C. James Raju, Preparation and Characterization of Ce1−x(Gd0.5Pr0.5)xO2 Electrolyte for IT-SOFCs, Int. J. Hydrogen Energy, 37 (2012) 10311-10317. 6. M. Matsuda, T. Hosomi, K. Murata, T. Fukui, M. Miyake, Fabrication of Bilayered YSZ/SDC Electrolyte Film by Electrophoretic Deposition for Reduced-temperature Operating Anode-supported SOFC, J. Power Sources, 165 (2007) 102-107. 7. Y.-Y. Chen, W.-C.J. Wei, Processing and Characterization of Ultra-thin Yttria-stabilized Zirconia (YSZ) Electrolytic Films for SOFC, Solid State Ionic, 177 (2006) 351-357. 8. H. Li, C. Xia, M. Zhu, Z. Zhou, G. Meng, Reactive Ce0.8Sm0.2O1.9 Powder Synthesized by Carbonate Coprecipitation: Sintering and Electrical Characteristics, Acta Mater., 54 (2006) 721-727. 9. D.R. Ou, T. Mori, F. Ye, M. Takahashi, J. Zou, J. Drennan, Microstructures and Electrolytic Properties of Yttrium-doped Ceria Electrolytes: Dopant Concentration and Grain Size Dependences, Acta Mater., 54 (2006) 3737-3746. 10. M. Kahlaoui, A. Inoubli, S. Chefi, A. Kouki, A. Madani, C. Chefi, Electrochemical and Structural Study of Ce0.8Sm0.2−xLaxO1.9 Electrolyte Materials for SOFC, Ceram. Int., 39 (2013) 6175-6182. 11. S.C. Singhal, K. Kendall, High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, 2003. 12. B. Li, Y. Liu, X. Wei, W. Pan, Electrical Properties of Ceria Co-doped with Sm3+ and Nd3+, J. Power Sources, 195 (2010) 969-976. 13. M. Dudek, A. Rapacz-Kmita, M. Mroczkowska, M. Mosiałek, G. Mordarski, Co-doped Ceria-based Solid Solution in the CeO2–M2O3–CaO, M=Sm, Gd System, Electrochim. Acta, 55 (2010) 4387-4394. 14. B. Li, X. Wei, W. Pan, Improved Electrical Conductivity of Ce0.9Gd0.1O1.95 and Ce0.9Sm0.1O1.95 by Co-doping, Int. J. Hydrogen Energy, 35 (2010) 3018-3022. 15. Z. Tianshu, P. Hing, H. Huang, J. Kilner, Ionic Conductivity in the CeO2–Gd2O3 System (0.05≤Gd/Ce≤0.4) Prepared by Oxalate Coprecipitation, Solid State Ionic, 148 (2002) 567-573. 16. X. Zhang, C. Decès-Petit, S. Yick, M. Robertson, O. Kesler, R. Maric, D. Ghosh, A Study on Sintering Aids for Sm0.2Ce0.8O1.9 Electrolyte, J. Power Sources, 162 (2006) 480-485. 17. H. Yoshida, T. Inagaki, Effects of Additives on the Sintering Properties of Samaria-doped Ceria, J. Alloys Compd., 408-412 (2006) 632-636. 18. Y.-C. Wu, Y.-Y. Liao, Analysis of Domain Structure in the Ce0.8Sm0.15Ca0.05O1.875 Sample, J. Electroceramics, 38 (2017) 81-91. 19. Y.-C. Wu, C.-C. Lin, The Microstructures and Property Analysis of Aliovalent Cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) Co-Doped Ceria-Base Electrolytes after an Aging Treatment, Int. J. Hydrogen Energy, 39 (2014) 7988-8001. 20. C. Chiu, Doped Ceria-based Fluorite Type Electrolyte Materials for IT-SOFCs, Department of Materials Science and Engineering College of Engineering, National Taiwan University, Master, 2017. 21. Y.-H. Cheng, (Bi, Mn, Fe)-Doped Ceria Electrolyte Materials for IT-SOFCs, Department of Materials Science and Engineering College of Engineering National Taiwan University, Master, 2018. 22. P.-S. Cho, Y.H. Cho, S.-Y. Park, S.B. Lee, D.-Y. Kim, H.-M. Park, G. Auchterlonie, J. Drennan, J.-H. Lee, Grain-Boundary Conduction in Gadolinia-Doped Ceria: The Effect of SrO Addition, J. Electrochem. Soc., 156 (2009) B339-B344. 23. P.-S. Cho, S.B. Lee, Y.H. Cho, D.-Y. Kim, H.-M. Park, J.-H. Lee, Effect of CaO Concentration on Enhancement of Grain-boundary Conduction in Gadolinia-doped Ceria, J. Power Sources, 183 (2008) 518-523. 24. T.S. Zhang, J. Ma, Y.J. Leng, S.H. Chan, P. Hing, J.A. Kilner, Effect of Transition Metal Oxides on Densification and Electrical Properties of Si-containing Ce0.8Gd0.2O2−δ Ceramics, Solid State Ionic, 168 (2004) 187-195. 25. R. Kannan, K. Singh, S. Gill, T. Fürstenhaupt, V. Thangadurai, Chemically Stable Proton Conducting Doped BaCeO3 -No More Fear to SOFC Wastes, Sci. Rep., 3 (2013) 26. C. Sun, U. Stimming, Recent Anode Advances in Solid Oxide Fuel Cells, J. Power Sources, 171 (2007) 247-260. 27. R.J. Gorte, J.M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, J. Catal., 216 (2003) 477-486. 28. S.C. Singhal, K. Kendall, Chapter 1 - Introduction to SOFCs, in: S.C. Singhal, K. Kendall (Eds.) High Temperature and Solid Oxide Fuel Cells, Elsevier Science, Amsterdam, 2003, pp. 1-22. 29. R. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. A, 32 (1976) 751-767. 30. S. Omar, E.D. Wachsman, J.L. Jones, J.C. Nino, Crystal Structure–Ionic Conductivity Relationships in Doped Ceria Systems, J. Am. Ceram. Soc., 92 (2009) 2674-2681. 31. H. Yoshida, K. Miura, J.-i. Fujita, T. Inagaki, Effect of Gallia Addition on the Sintering Behavior of Samaria-Doped Ceria, J. Am. Ceram. Soc., 82 (1999) 219-221. 32. M. Yan, T. Mori, J. Zou, H. Huang, J. Drennan, Microstructures and Mechanical Properties of Ce1−xCaxO2−y (x=0.05, 0.1, 0.2) with Different Sintering Temperatures, J. Eur. Ceram. Soc., 30 (2010) 669-675. 33. Y.H. Cho, P.-S. Cho, G. Auchterlonie, D.K. Kim, J.-H. Lee, D.-Y. Kim, H.-M. Park, J. Drennan, Enhancement of Grain-boundary Conduction in Gadolinia-doped Ceria by the Scavenging of Highly Resistive Siliceous Phase, Acta Mater., 55 (2007) 4807-4815. 34. S. Banerjee, P.S. Devi, D. Topwal, S. Mandal, K. Menon, Enhanced Ionic Conductivity in Ce0.8Sm0.2O1.9: Unique Effect of Calcium Co-doping, Adv. Funct. Mater., 17 (2007) 2847-2854. 35. P. Singh, M.S. Hegde, Controlled Synthesis of Nanocrystalline CeO2 and Ce1−xMxO2−δ (M=Zr, Y, Ti, Pr and Fe) Solid Solutions by the Hydrothermal Method: Structure and Oxygen Storage Capacity, J. Solid State Chem., 181 (2008) 3248-3256. 36. L. Liu, J. Shi, X. Zhang, J. Liu, Flower-Like Mn-Doped CeO2 Microstructures: Synthesis, Characterizations, and Catalytic Properties, J. Chem., 2015 (2015) 37. R. Wang, C. Chen, S. Deng, P. Shen, L. Gong, N. Zhang, Improvement of Preferential CO Oxidation Activity over CuO/Co3O4-CeO2 Catalysts: Effect of Co/Ce Ratio, Journal of the Chilean Chemical Society, 59 (2014) 2710-2716. 38. Y. Xia, X. Liu, Y. Bai, H. Li, X. Deng, X. Niu, X. Wu, D. Zhou, Z. Wang, J. Meng, Electrical Properties Optimization of Calcium Co-doping System: CeO2–Sm2O3, Int. J. Hydrogen Energy, 37 (2012) 11934-11940. 39. Z.P. Li, T. Mori, F. Ye, D.R. Ou, J. Zou, J. Drennan, Dislocation Associated Incubational Domain Formation in Lightly Gadolinium-doped Ceria, Microsc. Microanal., 17 (2011) 49-53. 40. F. Ye, T. Mori, D.R. Ou, M. Takahashi, J. Zou, J. Drennan, Ionic Conductivities and Microstructures of Ytterbium-Doped Ceria, J. Electrochem. Soc., 154 (2007) B180-B185. 41. F. Ye, T. Mori, D.R. Ou, J. Zou, G. Auchterlonie, J. Drennan, Compositional and Valent State Inhomogeneities and Ordering of Oxygen Vacancies in Terbium-doped Ceria, J. Appl. Phys., 101 (2007) 42. D.R. Ou, T. Mori, F. Ye, J. Zou, G. Auchterlonie, J. Drennan, Oxygen-vacancy Ordering in Lanthanide-doped Ceria: Dopant-type Dependence and Structure Model, Phys. Rev. B, 77 (2008) 024108. 43. Z.-P. Li, T. Mori, G.J. Auchterlonie, J. Zou, J. Drennan, Direct Evidence of Dopant Segregation in Gd-doped Ceria, Appl. Phys. Lett., 98 (2011) 093104. 44. D.R. Ou, T. Mori, F. Ye, T. Kobayashi, J. Zou, G. Auchterlonie, J. Drennan, Oxygen Vacancy Ordering in Heavily Rare-earth-doped Ceria, Appl. Phys. Lett., 89 (2006) 171911. 45. Z. Tianshu, P. Hing, H. Huang, J. Kilner, Sintering and densification behavior of Mn-doped CeO2, Mater. Sci. Eng., B, 83 (2001) 235-241. 46. Z. Tianshu, P. Hing, H. Huang, J. Kilner, Early-stage Sintering Mechanisms of Fe-doped CeO2, J. Mater. Sci., 37 (2002) 997-1003. 47. M.I. Mendelson, Average Grain Size in Polycrystalline Ceramics, J. Am. Ceram. Soc., 52 (1969) 443-446. 48. J.-E. Hong, S. Ida, T. Ishihara, Effects of Transition Metal Addition on Sintering and Electrical Conductivity of La-doped CeO2 as Buffer Layer for Doped LaGaO3 Electrolyte Film, Solid State Ionic, 262 (2014) 374-377. 49. Y.-W. Bai, Scientific Forensics of Ru-porcelain, Department of Materials Science and Engineering Collage of Engineering, National Taiwan University, Master, 2018. 50. G.M. Christie, F.P.F. van Berkel, Microstructure — ionic conductivity relationships in ceria-gadolinia electrolytes, Solid State Ionic, 83 (1996) 17-27. 51. X. Guo, R.-Z. Yuan, On the grain boundaries of ZrO2-based solid electrolyte, Solid State Ionic, 80 (1995) 159-166 52. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, John Wiley & Sons, 2018. 53. H. Inaba, H. Tagawa, Ceria-based Solid Electrolytes, Solid State Ionic, 83 (1996) 1-16. 54. Z.P. Li, T. Mori, G.J. Auchterlonie, J. Zou, J. Drennan, Superstructure Formation and Variation in Ni-GDC Cermet Anodes in SOFC, Physical Chemistry Chemical Physics, 13 (2011) 9685-9690. 55. F. Ye, T. Mori, D.R. Ou, J. Zou, J. Drennan, Microstructural Characterization of Terbium-doped Ceria, Mater. Res. Bull., 42 (2007) 943-949. 56. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Springer US, Boston, MA, 1996. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72957 | - |
| dc.description.abstract | 本研究旨在研究釤、錳、鐵共摻雜二氧化鈰基電解質材料合成、燒結及電性劣化的行為。首先,二氧化鈰基材料為透過乙二胺四乙酸-檸檬酸法製備釤錳鐵共摻雜二氧化鈰(Ce0.9Sm0.1O2 和Ce0.9Sm0.09 Fe0.005Mn0.005O2,分別簡稱ST00及S9HH)樣品,經X光繞射分析得知均生成單一立方螢石結構,未有第二相析出,而且在1250 ℃持溫5小時完成燒結 (高於99%相對密度)。此外,利用兩點性電性量測和阻抗分析,了解電性表現和離子導電機制。二氧化鈰基電解質的電性和溫度倒數呈現線性關係。得知S9HH於空氣環境下800 ℃之導電性為7.15*10-2 S•cm-1,高於未添加錳鐵者(ST00)。ST00和S9HH的活化能皆在1.10到1.20 eV之間,推斷皆為以氧空缺交換氧離子擴散為主要導電機制。在650 °C長時間的電性穩定性測試方面,顯示釤錳鐵共摻雜二氧化鈰經長時間老化,電性表現(3.11*10-2 S•cm-1)仍高於原始製備的釤共摻雜二氧化鈰ST00(2.60*10-2 S•cm-1)。研究指出添加鐵錳元素後能有效提升短時(short-term)高溫導電性,而長時間(long-term)電性劣化來自晶界漸次產生的高Sm的螢石相微晶,非由超晶格的氧空缺所造成。 | zh_TW |
| dc.description.abstract | Ceria-based electrolyte materials are synthesized by an EDTA-citric acid method. Two samples, Ce0.9Sm0.1O2 (ST00) and Ce0.9Sm0.09Fe0.005Mn0.005O2 (S9HH) are prepared and sintered to single cubic fluorite structure and still kept within solution limit. The microstructure and electrical properties are analyzed, showing S9HH having >99% theoretical density (T.D.) observed by SEM after sintered at 1250 ℃ for 5 hr, and suitable for an electrolyte of solid oxide fuel cell. Bulk electrical conductivity of S9HH and ST00 is a liner relationship to the reverse of the temperature (1/T). The bulk electrical conductivity of S9HH samples is 7.15*10-2 S•cm-1 higher than that of ST00 samples 2.60*10-2 S•cm-1 at 800 ℃. Both of the activation energy of ceria-based materials are around 1.10-1.20 eV, indicating the same conductivity mechanism by oxygen vacancy/ion exchange and diffusion. After an aging treatment at 650 ℃ for a holding time of 500 h, the electrical conductivity of S9HH reduces to 3.11*10-2 S•cm-1, but still higher than that of ST00 1.60*10-2 S•cm-1 at 800 ℃. The electrical conductivity degradation in long-term aging is because of the formation of continues Sm-rich fluorite sub-micro grains. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:11:43Z (GMT). No. of bitstreams: 1 ntu-108-R06527010-1.pdf: 6402605 bytes, checksum: a2f8aec93a344ffd6bf4d7d5f5f65e8e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Literature Review 4 2.1 Solid Oxide Fuel Cells (SOFCs) 4 2.1.1 Criteria of Electrolyte Materials 4 2.2 CeO2-based Materials 7 2.2.1 Properties of Mono-doped Ceria 7 2.2.2 Properties of Co-doped Ceria 11 2.2.3 Microstructure of Ceria-based Electrolyte 14 Chapter 3 Experimental Procedure 17 3.1 Materials 17 3.2 Sample Preparation 17 3.2.1 EDTA-citric Acid Process 17 3.2.2 Cell Fabrication 18 3.3 Properties Characterization 20 3.3.1 Sedimentation 20 3.3.2 Phase Characterization 20 3.3.3 Density Measurement 21 3.3.4 Conductivity Measurement 22 3.3.5 Microstructure and Chemical Composition Analysis 23 3.3.6 Impedance Spectroscopy 24 3.3.7 Single Cell Test 24 Chapter 4 Results and Discussion 29 4.1 Solid Solution of Dopants 29 4.2 Sintering Properties 36 4.3 Short-Term Properties of Ceria-base Materials 42 4.3.1 Impedance Spectroscopy 42 4.3.2 Bulk Electrical Conductivity 43 4.3.3 TEM Analysis 44 4.4 Long-Term Properties of Ceria-base Materials 55 4.4.1 Impedance Spectroscopy 55 4.4.2 Bulk Electrical Conductivity 55 4.4.3 Microstructure Analyze 56 4.4.4 Tem Analysis 57 Chapter 5 Conclusions 70 Reference 71 Appendix 79 | |
| dc.language.iso | en | |
| dc.subject | 固態氧化物燃料電池 | zh_TW |
| dc.subject | 二氧化鈰 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | 電性 | zh_TW |
| dc.subject | 時效 | zh_TW |
| dc.subject | CeO2 | en |
| dc.subject | microstructure | en |
| dc.subject | electrical conductivity | en |
| dc.subject | aging | en |
| dc.subject | SOFCs | en |
| dc.title | 參雜過渡金屬離子之二氧化鈰電解質燒結性能和電性表現研究 | zh_TW |
| dc.title | Investigation on Sintering and Electrical Conductivity of Ceria-based Materials by Addition of Multiple Metal Oxides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳玉娟(Yu-Chuan Wu),洪逸明(I-Ming Hung),陳彥友 | |
| dc.subject.keyword | 固態氧化物燃料電池,二氧化鈰,微結構,電性,時效, | zh_TW |
| dc.subject.keyword | SOFCs,CeO2,microstructure,electrical conductivity,aging, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU201901627 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
