請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72954| 標題: | 以支援向量回歸預測太陽能系統短期輸出 Forecasting Short-Term Power Output of Photovoltaic Systems Based on Support Vector Regression |
| 作者: | Yi-Song Lin 林逸松 |
| 指導教授: | 劉志文(Chih-Wen Liu) |
| 關鍵字: | 太陽能預測,支援向量回歸,k-平均演算法, Prediciton photovoltaic,support vector regression,K-Means Algorithm, |
| 出版年 : | 2019 |
| 學位: | 碩士 |
| 摘要: | 太陽能是未來主要的能源供給,但是其供電受天氣影響並不穩定。預測發電量是可行解決之道,配上適當的電力調度可使電力供給穩定,但是如何使其預測準確又是問題。本論文嘗試以支援向量回歸來進行預測,因為支援向回歸原理簡單,發展完整,容易改良預測結果。以台電跟中央氣象局過往資料進行預測,最後我們結合k-平均演算法和支援向量回歸可使預測平均絕對值誤差縮小為總裝置容量的7 % ,並與決策樹、類神經網路、k-鄰近法進行比較。之後進行延伸,嘗試預測台電即時機組發電量,也證實此方法實作是可行的。之後以插值的方式加上天氣預報來預測近日發電模型,不過其準確度受限於天氣預報。 Photovolatic will be the major power supply in the future, but it is not stable due to the weather condtion. Forecasting power output of PV system and optimal power dispatach can solve this problem, but how to accurate prediction? This thesis tries to predition based on support vector regression(SVR) and improve this method. The power data is collected from Taiwan Power Company and the weather data is collected from Taiwan Central Weather Bureau(TCWB). We use those historical data to forecast the PV output. Finally, we propose algorithm that is combined by K-Means Algorithm and SVR.It’s mean relative error is reduced to 7 %. This algorithm has better prediction accuracy than regression tree, K nearest neighbors regression and neural network. We extend this method to the online forecast. It still works, but needs to improve. Use the interpolation and weather forecast to predict the receant PV power output. Beacause of the inaccurate weather forecast, but its accuracy is limited by weather forecast. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72954 |
| DOI: | 10.6342/NTU201901628 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 電機工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
