Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72939
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭(Chin-Tin Chen)
dc.contributor.authorYi-Chien Wuen
dc.contributor.author吳宜謙zh_TW
dc.date.accessioned2021-06-17T07:11:03Z-
dc.date.available2024-07-24
dc.date.copyright2019-07-24
dc.date.issued2019
dc.date.submitted2019-07-19
dc.identifier.citation1. 民國106年主要死因統計結果分析. 中華民國衛生福利部統計處.
2. 癌症登記線上互動查詢系統. 中華民國衛生福利部國民健康署.
3. 癌症醫療利用互動式指標查詢 https://iiqsw.mohw.gov.tw/dataviscategory.aspx?dtype=3. 中華民國衛生福利部.
4. National Center for Health Statistics https://www.cdc.gov/nchs/fastats/cancer.htm. Centers for Disease Control and Prevention (CDC)
5. Cancer survival for common cancers https://www.cancerresearchuk.org/health-professional/cancer-statistics/survival/common-cancers-compared - heading-Three. Cancer Research UK
6. Where can I find Cancer Survival Statistics? https://surveillance.cancer.gov/statistics/types/survival.html. National Cancer Institute - Division of Cancer Control & Population Sciences.
7. SEER Cancer Statistics Review (CSR) 1975-2015. National Cancer Institute - Surveillance, Epidemiology, and End Results Program
8. Dagogo-Jack, I. and A.T. Shaw, Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol, 2018. 15(2): p. 81-94.
9. Tanwar, J., et al., Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis, 2014. 2014: p. 541340.
10. Heldin, C.H., et al., High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer, 2004. 4(10): p. 806-13.
11. Malhotra, V. and M.C. Perry, Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol Ther, 2003. 2(4 Suppl 1): p. S2-4.
12. About side effects of chemotherapy https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/chemotherapy/side-effects/about. Cancer Research UK.
13. How chemotherapy works https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/chemotherapy/how-chemotherapy-works. Cancer Research UK.
14. Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer, 2006. 6(10): p. 789-802.
15. Li, F., et al., Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am J Cancer Res, 2017. 7(12): p. 2350-2394.
16. de Man, F.M., et al., Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet, 2018. 57(10): p. 1229-1254.
17. Rothenberg, M.L., Irinotecan (CPT-11): recent developments and future directions--colorectal cancer and beyond. Oncologist, 2001. 6(1): p. 66-80.
18. Conroy, T., et al., FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med, 2011. 364(19): p. 1817-25.
19. Jung, J.Y., et al., Second-Line Irinotecan, Leucovorin, and 5-Fluorouracil for Gastric Cancer Patients after Failed Docetaxel and S-1. Gastroenterol Res Pract, 2016. 2016: p. 6857625.
20. Kamnerdsupaphon, P., et al., FOLFIRI chemotherapy for metastatic colorectal cancer patients. J Med Assoc Thai, 2007. 90(10): p. 2121-7.
21. Agostinis, P., et al., Photodynamic therapy of cancer: an update. CA Cancer J Clin, 2011. 61(4): p. 250-81.
22. Yoo, J.O. and K.S. Ha, New insights into the mechanisms for photodynamic therapy-induced cancer cell death. Int Rev Cell Mol Biol, 2012. 295: p. 139-74.
23. Abrahamse, H. and M.R. Hamblin, New photosensitizers for photodynamic therapy. Biochem J, 2016. 473(4): p. 347-64.
24. Ormond, A.B. and H.S. Freeman, Dye Sensitizers for Photodynamic Therapy. Materials (Basel), 2013. 6(3): p. 817-840.
25. Castano, A.P., T.N. Demidova, and M.R. Hamblin, Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther, 2004. 1(4): p. 279-93.
26. Calixto, G.M., et al., Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules, 2016. 21(3): p. 342.
27. Nyman, E.S. and P.H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B, 2004. 73(1-2): p. 1-28.
28. Pandey, R.K., et al., Chlorin and porphyrin derivatives as potential photosensitizers in photodynamic therapy. Photochem Photobiol, 1991. 53(1): p. 65-72.
29. Zhang, J., et al., An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B, 2018. 8(2): p. 137-146.
30. Wang, X.-F., et al., Molecular engineering on a chlorophyll derivative, chlorin e6, for significantly improved power conversion efficiency in dye-sensitized solar cells. Journal of Power Sources, 2013. Volume 242: p. Pages 860-864.
31. Amao, Y. and T. Komori, Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosens Bioelectron, 2004. 19(8): p. 843-7.
32. Kay, A. and M. Graetzel, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. The Journal of Physical Chemistry, 1993. 97: p. 6272-6277.
33. Calogero, G., et al., Vegetable-based dye-sensitized solar cells. Chem Soc Rev, 2015. 44(10): p. 3244-94.
34. Derycke, A.S. and P.A. de Witte, Liposomes for photodynamic therapy. Adv Drug Deliv Rev, 2004. 56(1): p. 17-30.
35. Muehlmann, L.A., et al., Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy. Braz J Med Biol Res, 2011. 44(8): p. 729-37.
36. Konan, Y.N., R. Gurny, and E. Allemann, State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B, 2002. 66(2): p. 89-106.
37. Ravindran, J., S. Prasad, and B.B. Aggarwal, Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J, 2009. 11(3): p. 495-510.
38. Feng, T., et al., Liposomal curcumin and its application in cancer. Int J Nanomedicine, 2017. 12: p. 6027-6044.
39. Yallapu, M.M., M. Jaggi, and S.C. Chauhan, Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today, 2012. 17(1-2): p. 71-80.
40. Bangham, A.D., M.M. Standish, and J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol, 1965. 13(1): p. 238-52.
41. Bangham, A.D. and R.W. Horne, Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents as Observed in the Electron Microscope. J Mol Biol, 1964. 8: p. 660-8.
42. A.V, Y., et al., Stability Aspects of Liposomes. Indian Journal of Pharmaceutical Research and Education, 2011. 45(4): p. 402-413.
43. Gater, D.L., et al., Hydrogen bonding of cholesterol in the lipidic cubic phase. Langmuir, 2013. 29(25): p. 8031-8.
44. Briuglia, M.L., et al., Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res, 2015. 5(3): p. 231-42.
45. Bulbake, U., et al., Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics, 2017. 9(2).
46. Bozzuto, G. and A. Molinari, Liposomes as nanomedical devices. Int J Nanomedicine, 2015. 10: p. 975-99.
47. Pattni, B.S., V.V. Chupin, and V.P. Torchilin, New Developments in Liposomal Drug Delivery. Chem Rev, 2015. 115(19): p. 10938-66.
48. Mignani, S., et al., Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules, 2015. 16(1): p. 1-27.
49. Ma, L., M. Kohli, and A. Smith, Nanoparticles for combination drug therapy. ACS Nano, 2013. 7(11): p. 9518-25.
50. Gurunathan, S., et al., Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer. Int J Mol Sci, 2018. 19(10).
51. Jadia, R., C. Scandore, and P. Rai, Nanoparticles for Effective Combination Therapy of Cancer. Int J Nanotechnol Nanomed, 2016. 1(1).
52. Yhee, J.Y., et al., Nanoparticle-Based Combination Therapy for Cancer Treatment. Curr Pharm Des, 2015. 21(22): p. 3158-66.
53. Hu, C.M., S. Aryal, and L. Zhang, Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv, 2010. 1(2): p. 323-34.
54. Mayer, L.D., et al., Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice. Mol Cancer Ther, 2006. 5(7): p. 1854-63.
55. Lamb, Y.N. and L.J. Scott, Liposomal Irinotecan: A Review in Metastatic Pancreatic Adenocarcinoma. Drugs, 2017. 77(7): p. 785-792.
56. Woo, W., E.T. Carey, and M. Choi, Spotlight on liposomal irinotecan for metastatic pancreatic cancer: patient selection and perspectives. Onco Targets Ther, 2019. 12: p. 1455-1463.
57. Gandhi, J., et al., Role of Modulator of Inflammation Cyclooxygenase-2 in Gammaherpesvirus Mediated Tumorigenesis. Front Microbiol, 2017. 8: p. 538.
58. Urade, M., Cyclooxygenase (COX)-2 as a potent molecular target for prevention and therapy of oral cancer. Japanese Dental Science Review, 2008. 44(1): p. 57-65.
59. Sobolewski, C., et al., The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol, 2010. 2010: p. 215158.
60. Kern, M.A., et al., Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res, 2006. 66(14): p. 7059-66.
61. Greenhough, A., et al., The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 2009. 30(3): p. 377-86.
62. Rathos, M.J., et al., Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells. BMC Cancer 2013.
63. Altorki, N.K., et al., Chemotherapy induces the expression of cyclooxygenase-2 in non-small cell lung cancer. Clin Cancer Res, 2005. 11(11): p. 4191-7.
64. Mercer, S.J., et al., Rapid up-regulation of cyclooxygenase-2 by 5-fluorouracil in human solid tumors. Anticancer Drugs, 2005. 16(5): p. 495-500.
65. Yin, M.B., et al., Potentiation of irinotecan sensitivity by Se-methylselenocysteine in an in vivo tumor model is associated with downregulation of cyclooxygenase-2, inducible nitric oxide synthase, and hypoxia-inducible factor 1alpha expression, resulting in reduced angiogenesis. Oncogene, 2006. 25(17): p. 2509-19.
66. Alvarenga, E.M., et al., Carvacrol reduces irinotecan-induced intestinal mucositis through inhibition of inflammation and oxidative damage via TRPA1 receptor activation. Chem Biol Interact, 2016. 260: p. 129-140.
67. Ohno, Y., et al., Role of cyclooxygenase-2 in immunomodulation and prognosis of endometrial carcinoma. Int J Cancer, 2005. 114(5): p. 696-701.
68. Ristimaki, A., et al., Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res, 2002. 62(3): p. 632-5.
69. Becker, M.R., et al., COX-2 expression in malignant melanoma: a novel prognostic marker? Melanoma Res, 2009. 19(1): p. 8-16.
70. Ferrandina, G., et al., Increased cyclooxygenase-2 expression is associated with chemotherapy resistance and poor survival in cervical cancer patients. J Clin Oncol, 2002. 20(4): p. 973-81.
71. Yu, X., et al., Inhibition of COX-2/PGE2 cascade ameliorates cisplatin-induced mesangial cell apoptosis. Am J Transl Res, 2017. 9(3): p. 1222-1229.
72. Logan, R.M., et al., Nuclear factor-kappaB (NF-kappaB) and cyclooxygenase-2 (COX-2) expression in the oral mucosa following cancer chemotherapy. Oral Oncol, 2007. 43(4): p. 395-401.
73. Goel, A., C.R. Boland, and D.P. Chauhan, Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett, 2001. 172(2): p. 111-8.
74. Chun, K.S., et al., Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis, 2003. 24(9): p. 1515-24.
75. Lev-Ari, S., et al., Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res, 2006. 26(6B): p. 4423-30.
76. Cho, J.W., et al., Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med, 2005. 37(3): p. 186-92.
77. Lev-Ari, S., et al., Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res, 2005. 11(18): p. 6738-44.
78. Chen, L., et al., Curcumin cytotoxicity is enhanced by PTEN disruption in colorectal cancer cells. World J Gastroenterol, 2013. 19(40): p. 6814-24.
79. Panda, A.K., et al., New insights into therapeutic activity and anticancer properties of curcumin. J Exp Pharmacol, 2017. 9: p. 31-45.
80. Ferguson, J.E. and R.A. Orlando, Curcumin reduces cytotoxicity of 5-Fluorouracil treatment in human breast cancer cells. J Med Food, 2015. 18(4): p. 497-502.
81. Chaurasia, S., et al., Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies. Drug Dev Ind Pharm, 2016. 42(5): p. 694-700.
82. Tsai, Y.J., et al., Histone acetyltransferase p300 is induced by p38MAPK after photodynamic therapy: the therapeutic response is increased by the p300HAT inhibitor anacardic acid. Free Radic Biol Med, 2015. 86: p. 118-32.
83. Marcu, M.G., et al., Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem, 2006. 2(2): p. 169-74.
84. Santer, F.R., et al., Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther, 2011. 10(9): p. 1644-55.
85. Balasubramanyam, K., et al., Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem, 2004. 279(49): p. 51163-71.
86. Sunagawa, Y., et al., Curcumin and its demethoxy derivatives possess p300 HAT inhibitory activity and suppress hypertrophic responses in cardiomyocytes. J Pharmacol Sci, 2018. 136(4): p. 212-217.
87. Zhu, X., et al., Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS One, 2014. 9(3): p. e91303.
88. Peng, P.C., et al., Dual-effect liposomes encapsulated with doxorubicin and chlorin e6 augment the therapeutic effect of tumor treatment. Lasers Surg Med, 2015. 47(1): p. 77-87.
89. Chou, T.H., S.C. Chen, and I.M. Chu, Effect of composition on the stability of liposomal irinotecan prepared by a pH gradient method. J Biosci Bioeng, 2003. 95(4): p. 405-8.
90. Carter, K.A., et al., Sphingomyelin Liposomes Containing Porphyrin-phospholipid for Irinotecan Chemophototherapy. Theranostics, 2016. 6(13): p. 2329-2336.
91. Drummond, D.C., et al., Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res, 2006. 66(6): p. 3271-7.
92. Hattori, Y., et al., Novel irinotecan-loaded liposome using phytic acid with high therapeutic efficacy for colon tumors. J Control Release, 2009. 136(1): p. 30-7.
93. Riviere, K., et al., Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. J Control Release, 2011. 153(3): p. 288-96.
94. Dicko, A., et al., Role of copper gluconate/triethanolamine in irinotecan encapsulation inside the liposomes. Int J Pharm, 2007. 337(1-2): p. 219-28.
95. Ramsay, E., et al., Transition metal-mediated liposomal encapsulation of irinotecan (CPT-11) stabilizes the drug in the therapeutically active lactone conformation. Pharm Res, 2006. 23(12): p. 2799-808.
96. Dicko, A., et al., Intra and inter-molecular interactions dictate the aggregation state of irinotecan co-encapsulated with floxuridine inside liposomes. Pharm Res, 2008. 25(7): p. 1702-13.
97. Li, X., et al., Complexation of Internalized Doxorubicin into Fiber Bundles Affects its Release Rate from Liposomes. Journal of Liposome Research, 2008. 10(1): p. 15-27.
98. Josefsen, L.B. and R.W. Boyle, Photodynamic therapy and the development of metal-based photosensitisers. Met Based Drugs, 2008. 2008: p. 276109.
99. Malina, L., et al., The in vitro cytotoxicity of metal-complexes of porphyrin sensitizer intended for photodynamic therapy. Toxicol In Vitro, 2016. 34: p. 246-256.
100. Kolodynska, D., Application of a new generation of complexing agents in removal of heavy metal ions from different wastes. Environ Sci Pollut Res Int, 2013. 20(9): p. 5939-49.
101. Maketon, W., C.Z. Zenner, and K.L. Ogden, Removal efficiency and binding mechanisms of copper and copper-EDTA complexes using polyethyleneimine. Environ Sci Technol, 2008. 42(6): p. 2124-9.
102. Nikolaeva, I.A., et al., Chlorin e6-cholesterol conjugate and its copper complex. Simple synthesis and entrapping in phospholipid vesicles. Bioorg Med Chem Lett, 2010. 20(9): p. 2872-5.
103. Fugit, K.D. and B.D. Anderson, The role of pH and ring-opening hydrolysis kinetics on liposomal release of topotecan. J Control Release, 2014. 174: p. 88-97.
104. Grit, M., et al., Hydrolysis of partially saturated egg phosphatidylcholine in aqueous liposome dispersions and the effect of cholesterol incorporation on hydrolysis kinetics. J Pharm Pharmacol, 1993. 45(6): p. 490-5.
105. Haeri, A., et al., Preparation and characterization of stable nanoliposomal formulation of fluoxetine as a potential adjuvant therapy for drug-resistant tumors. Iran J Pharm Res, 2014. 13(Suppl): p. 3-14.
106. Zucker, D., et al., Liposome drugs' loading efficiency: a working model based on loading conditions and drug's physicochemical properties. J Control Release, 2009. 139(1): p. 73-80.
107. Haran, G., et al., Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta, 1993. 1151(2): p. 201-15.
108. Wei, H., et al., Active loading liposomal irinotecan hydrochloride: Preparation, in vitro and in vivo evaluation. Asian Journal of Pharmaceutical Sciences, 2013. 8(5): p. 303-311.
109. Huang, H.C., et al., Photodynamic Therapy Synergizes with Irinotecan to Overcome Compensatory Mechanisms and Improve Treatment Outcomes in Pancreatic Cancer. Cancer Res, 2016. 76(5): p. 1066-77.
110. Chen, J.J., et al., Effects of a novel photoactivated photosensitizer on MDR1 over-expressing human breast cancer cells. J Photochem Photobiol B, 2017. 171: p. 67-74.
111. Lee, Y.K., et al., Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J Agric Food Chem, 2009. 57(1): p. 305-10.
112. Zhu, D.-J., et al., Curcumin partly ameliorates irinotecan-induced diarrhea and synergistically promotes apoptosis in colorectal cancer through mediating oxidative stress. Oncotarget, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72939-
dc.description.abstract癌症為造成人口死亡的重要原因,多年來一直高居世界人口的十大死因第二名,而隨著醫療發展的進步與新藥的開發,針對不同癌症,病患獲得更好的治療,癌症的預後結果也隨之改善。然而,在癌症治療過程中,癌細胞對治療產生抗性的而造成治癒效果不佳一直是治療上所需面對的問題。對於治療這些具有抗藥性的癌症,目前有效的方式之一為併用療法: 透過併用兩種或以上不同毒殺機制的藥物治療癌症。本篇研究即希望透過併用藥物以及微脂體劑型,製備出雙效微脂體作為一併用療法。本研究的第一部分,我們將化療藥物 Irinotecan (IRT) 以及光感物質 Chlorin e6 (Ce6) 同時包覆在微脂體中,希望藉由化療藥物與光動力治療的搭配毒殺表現ABCG2的抗性細胞。在此一部分,我們利用細胞實驗來驗證此一微脂體對細胞的毒性以及探討可能的毒殺機制。此外,我們利用添加同銅離子以及改良雙效微脂體的製備方法,針對此一微脂體的在血漿中的穩定性做進一步的優化。第二部分,我們希望利用化療藥物 IRT 搭配天然植物萃取物 Curcumin (CUR) 發展出另一種併用療法,用於治療因化學藥物誘發表現 COX-2 基因的癌細胞。這一部分的研究主要探討微脂體 IRT與 CUR兩種藥物併用下毒殺細胞的效果,並進一步探討兩種藥物併用下對細胞 COX-2 基因表現量之影響。zh_TW
dc.description.abstractFor many years, cancer has been the leading cause of death in the world. Although the medical advances have improved the prognosis and treatments, the rate of recurrence and death for several types of cancer remain disappointingly high, and this is often due to drug resistance of the cancer. One of the more effective ways to treat drug-resistant cancers is combinational therapy: using two or more medications that exert different cytotoxic mechanisms. In this study, we sought to develop a combination therapy based on liposomal irinotecan (IRT) in combination with chlorin e6 (Ce6) or curcumin (CUR). In the first part of our study, IRT and Ce6 were coloaded into PL-IRT-Ce6 liposomes. The liposome was developed to kill drug-resistant cancer cells that express the drug efflux transporter ABCG2. The cytotoxicity and the possible cytotoxic mechanism of PL-IRT-Ce6 were examined by in vitro studies. In addition, we improved the stability of PL-IRT-Ce6 by adding Cu2+ as the trapping agent of IRT as well as changing the liposome preparation method. In the second part of this study, we developed another combination therapy based on the use of liposomal IRT in combination with CUR, as CUR is thought to be able to downregulate IRT-induced expression of COX-2. In this latter part of the study, we focused on the cytotoxicity and the regulation of COX-2 expression when cells were treated with PL-IRT plus CUR.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:11:03Z (GMT). No. of bitstreams: 1
ntu-108-R06B22005-1.pdf: 3599793 bytes, checksum: e7a0d50fa4f6e2c4cb9ba23c40437792 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 1
Abstract 2
Chapter 1. Introduction 11
1.1 Cancer 11
1.2 Chemotherapy 12
1.3 Combination Therapy 13
1.4 Irinotecan 14
1.5 Photodynamic Therapy 15
1.5.1 The mechanism of PDT-induced cytotoxicity 16
1.5.2 Photosensitizers (PS) 17
1.5.3 Chlorin e6 (Ce6) 18
1.6 Curcumin (CUR) 19
1.7 Liposomes 20
1.7.1 Introduction to liposomes 20
1.7.2 Methods for preparing liposomes 21
1.7.3 Liposome applications in drug delivery 23
1.7.4 Liposomal irinotecan 24
1.8 Cyclooxygenases (COXs) 24
1.8.1 Cyclooxygenase-2 (COX-2) 25
1.8.2 Regulation of COX-2 expression 26
1.9 Rationale and Objectives 27
Chapter 2. Materials and Methods 29
2.1 Materials and Equipment 29
2.1.1 Materials 29
2.1.2 Equipment 31
2.2 Cell Lines 32
2.2.1 Cell culture medium 32
2.2.2 Cell subculture 32
2.2.3 Cryopreservation procedure and recovery of cryopreserved cells 33
2.3 Cell Counting 34
2.4 Liposome Preparation 34
2.4.1 PL-Ce6 34
2.4.2 PL-IRT 35
2.4.3 PL-IRT-Ce6 36
2.4.4 PL-IRT (Cu2+) 36
2.4.5 PL-IRT-Ce6 (Cu2+) 37
2.5 Characterization of Liposomes 38
2.6 Determination of Total Phosphorus in Liposome 38
2.7 Serum Stability Test 39
2.8 Ce6 Stability of PL-IRT-Ce6 (Cu2+) 40
2.9 The Cytotoxicity of PL-IRT-Ce6 40
2.10 Cellular uptake of PL-IRT-Ce6 42
2.11 Intracellular IRT Accumulation Post-PDT 42
2.12 Drug Treatment for ABCG2 Expression Analysis 43
2.13 The Anticancer Activity of PL-IRT+CUR 44
2.14 Drug Treatment for COX-2 Expression Analysis 45
2.15 mRNA Expression Analysis 45
2.15.1 RNA extraction 45
2.15.2 Reverse transcription, RT 46
2.15.3 Polymerase chain reaction, PCR 46
2.15.4 Gel electrophoresis 48
2.16 Statistical Analysis 48
Chapter 3. Results 49
3.1 The Dual-effect Liposome PL-IRT-Ce6 49
3.1.1 Preparation and characterization of PL-IRT-Ce6 49
3.1.2 Cytotoxicity of PL-IRT-Ce6 51
3.2 The Cytotoxic Mechanism of PL-IRT-Ce6 52
3.2.1 Pancreatic cancer cell drug resistance 52
3.2.2 Equal intracellular drug uptake in the absence of PDT 53
3.2.3 PL-IRT-Ce6 increases the level of intracellular IRT post-PDT 54
3.2.4 PL-IRT-Ce6 decreases the level of ABCG2 post-PDT 55
3.2.5 AsPC-1 cells are less sensitive to PL-IRT-Ce6 than MIA PaCa-2 cells 56
3.3 Optimization of PL-IRT-Ce6 56
3.3.1 Preparation and characterization of PL-IRT-Ce6 (Cu2+) 56
3.3.2 The stability of PL-IRT-Ce6 (Cu2+) is improved in 80% serum 58
3.4 The effect of PL-IRT on COX-2 mRNA Expression 59
3.4.1 CUR reduces IRT-mediated COX-2 upregulation 60
3.5 PL-IRT+CUR A375 cell cytotoxicity 61
Chapter 4. Discussion 61
4.1 Preparation of PL-IRT-Ce6 61
4.1.1 Stability of PL-IRT-Ce6 61
4.1.2 Optimization of PL-IRT-Ce6 by the addition of a trapping agent and use of a post-loading method 62
4.1.3 Characterization of PL-IRT-Ce6 (Cu2+) 65
4.2 The Cytotoxic Mechanism of PL-IRT-Ce6 66
4.3 The effect of PL-IRT in Combination with CUR on A375 cells 68
Chapter 5. Conclusion 69
References 90
dc.language.isoen
dc.title發展 Irinotecan 與 Chlorin e6 雙效微脂體藥物zh_TW
dc.titleDevelopment of a Dual-effect Liposome Encapsulating
Irinotecan and Chlorin e6
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳?承(Hsuan-Chen Wu),廖泰慶,謝堅銘
dc.subject.keyword併用療法,光動力治療,Irinotecan,Chlorin e6,Curcumin,COX-2,zh_TW
dc.subject.keywordCombination therapy,Photodynamic therapy,Irinotecan,Chlorin e6,Curcumin,COX-2,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201901588
dc.rights.note有償授權
dc.date.accepted2019-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
3.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved