Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/728
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴桓青
dc.contributor.authorJen-Hsuan Chungen
dc.contributor.author鍾任軒zh_TW
dc.date.accessioned2021-05-11T05:00:12Z-
dc.date.available2020-11-15
dc.date.available2021-05-11T05:00:12Z-
dc.date.copyright2019-11-15
dc.date.issued2019
dc.date.submitted2019-11-13
dc.identifier.citation1. Nagyvary, J., DiVerdi, J.A., Owen, N.L., & Tolley, H.D.J.N. (2006). Wood used by Stradivari and Guarneri. Nature, 444, 565.
2. Nagyvary, J., Guillemette, R.N., & Spiegelman, C.H.J.P.o. (2009). Mineral preservatives in the wood of Stradivari and Guarneri. PLoS ONE, 4, e4245.
3. Schwarze, F.W., Spycher, M., & Fink, S.J.N.P. (2008). Superior wood for violins–wood decay fungi as a substitute for cold climate. New Phytol., 179, 1095-1104.
4. Doring, E.N., Bein, R., & Fushi, G. (1999). How Many Strads?: Our Heritage from the Master. Chicago: Bein & Fushi.
5. Hill, W. H., Hill, A. F. & Hill, A. E. (1963) Antonio Stradivari: His Life and Work (1644-1737) (2nd ed.). New York: Dover Publications.
6. Wali, K.C. (2010). Cremona violins: A physicist's quest for the secrets of Stradivari. Singapore: World Scientific.
7. Tai, H.-C., & Chung, D.-T. (2012). Stradivari violins exhibit formant frequencies resembling vowels produced by females. Savart Journal, 1(2), 1-14.
8. Nagyvary, J. (1988). The chemistry of a Stradivarius. Chem. Eng. News, 66, 24-31.
9. Barlow, C., & Woodhouse, J. (1990). Bordered pits in spruce from old Italian violins. J. Microsc., 160, 203-211.
10. Boyden, D.D., Schwarz, B., Woodward, A.M., Marx, K., & Slatford, R. (1989). The Violin Family. London: Pan Macmillan.
11. Hutchins, C.M. (1981). The acoustics of violin plates, Scientific American 245(4), 170–186.
12. Grissino-Mayer, H.D., Sheppard, P.R., & Cleaveland, M.K. (2004). A dendroarchaeological re-examination of the “Messiah” violin and other instruments attributed to Antonio Stradivari. J. Archaeol. Sci., 31, 167-174.
13. Burckle, L., & Grissino-Mayer, H.D. (2003). Stradivari, violins, tree rings, and the Maunder Minimum: a hypothesis. Dendrochronologia, 21, 41-45.
14. Stoel, B.C., & Borman, T.M. (2008). A comparison of wood density between classical Cremonese and modern violins. PLoS ONE, 3, e2554.
15. Stoel, B.C., Borman, T.M., & de Jongh, R.J. (2012). Wood densitometry in 17th and 18th century Dutch, German, Austrian and French violins, compared to classical Cremonese and modern violins. PLoS ONE, 7, e46629.
16. Faber, T. (2011). Stradivarius: Five violins, one cello and a genius. London: Pan Macmillan.
17. Tai, H. (2007). Stradivari's Varnish: A Review of Scientific Findings, Part 1. J. Violin Soc. Am.: VSA Papers, 21, 119-144.
18. Tai, H. (2009). Stradivari's Varnish: A Review of Scientific Findings, Part 2. J. Violin Soc. Am.:VSA Papers, 22, 60-90.
19. Sacconi S.F. (1979). The Secrets of Stradivari, trans Dipper A, Rivaroli C. Cremona: Libreria del Convegno.
20. Barlow, C.Y., Edwards, P.P., Millward, G.R., Raphael, R., & Rubio, D.J. (1988). Wood treatment used in Cremonese instruments. Nature, 332, 313-313.
21. Schwanninger, M., Rodrigues, J., Pereira, H., & Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc., 36(1), 23-40.
22. Mukhopadhyay, R. (2007). How Stradivari and Guarneri got their music. Anal. Chem., 79, 819-820.
23. Schwarze, F., Lonsdale, D., & Mattheck, C. (1995). Detectability of wood decay caused by Ustulina deusta in comparison with other tree‐decay fungi. Eur. J. Plant Pathol., 25, 327-341.
24. Postek, M.T., Vladár, A., Dagata, J., Farkas, N., Ming, B., Wagner, R., Raman, A., Moon, R.J., Sabo, R., Wegner, T.H., et al. (2010). Development of the metrology and imaging of cellulose nanocrystals. Meas. Sci. Technol., 22, 024005.
25. Nilsson, T., & Rowell, R. (2012). Historical wood–structure and properties. J.Cult. Herit., 13, S5-S9.
26. Gibson, L.J. (2012). The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface, 9, 2749-2766.
27. Kránitz, K. (2014). Effect of natural aging on wood. (Doctoral dissertation, ETH-Zurich, 2014). ETH Zurich Research Collection, 21661.
28. Mohan, D., Pittman Jr, C.U., & Steele, P.H., (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels, 20, 848-889.
29. 李國乾 (2018)。 史特拉底瓦里小提琴木材性質的化學研究(博士論文,台灣大學,2018)。台灣博碩士論文知識加值系統。
30. Gil, A., & Neto, C.P. (1999). Solid-state NMR studies of wood and other lignocellulosic materials. Annu. rep. NMR spectrosc., 37, 75-117.
31. Pettersen, R.C. (1984). The chemical composition of wood. Vol 207. (pp. 57-126). Madison, Wisconsin: American Chemical Society.
32. Brandt, A., Gräsvik, J., Hallett, J.P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem., 15, 550-583.
33. Barnett, J.R., & Bonham, V.A.J.B.r. (2004). Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. Camb. Philos. Soc., 79(2), 461-472.
34. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 40, 3941-3994.
35. Fernandes, A.N., Thomas, L.H., Altaner, C.M., Callow, P., Forsyth, V.T., Apperley, D.C., Kennedy, C.J., & Jarvis, M.C. (2011). Nanostructure of cellulose microfibrils in spruce wood. Proc. Natl. Acad. Sci. U.S.A., 108, E1195-E1203.
36. Okano, T., & Koyanagi, A. (1986). Structural variation of native cellulose related to its source. Biopolymers, 25, 851-861.
37. Kim, S.H., Lee, C.M., & Kafle, K. (2013). Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng., 30, 2127-2141.
38. Yoshiharu, N., Shigenori, K., Masahisa, W., & Takeshi, O.J.M. (1997). Cellulose microcrystal film of high uniaxial orientation. Macromolecules, 30, 6395-6397.
39. Chandrasekaran, R. (1997). Molecular architecture of polysaccharide helices in oriented fibers. Adv. Carbohydr. Chem. Biochem., 52, 311-439.
40. Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., & Ståhl, K. (2005). On the determination of crystallinity and cellulose content in plant fibres. Cellulose, 12, 563.
41. Apperley, D.C., Harris, R.K., & Hodgkinson, P. (2012). Solid-state NMR: Basic principles and practice. New York: Momentum Press.
42. Kono, H., Yunoki, S., Shikano, T., Fujiwara, M., Erata, T., & Takai, M. (2002). CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J. Am. Chem. Soc., 124, 7506-7511.
43. Wikberg, H. (2005). Advanced solid state NMR spectroscopic techniques in the study of thermally modified wood. (Doctoral dissertation, University of Helsinki, 2005). E-thesis / Helsingin yliopisto.
44. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., & Johnson, D.K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels, 3, 10.
45. Haw, J.F., Maciel, G.E., & Schroeder, H.A. (1984). Carbon-13 nuclear magnetic resonance spectrometric study of wood and wood pulping with cross polarization and magic-angle spinning. Anal. Chem., 56, 1323-1329.
46. Teeäär, R., Serimaa, R., & Paakkarl, T.J. (1987). Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym. Bull. (Berl.), 17, 231-237.
47. Love, G., Snape, C., & Jarvis, M. (1992). Determination of the aromatic lignin content in oak wood by quantitative solid state 13C‐NMR. Biopolymers, 32, 1187-1192.
48. Renard, C.M., & Jarvis, M.C.(1999). A cross-polarization, magic-angle-spinning, 13C-nuclear-magnetic-resonance study of polysaccharides in sugar beet cell walls. Plant Physiol., 119, 1315-1322.
49. Johnson, R.L., & Schmidt-Rohr, K. (2014). Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J. Magn. Reson., 239, 44-49.
50. Scheller, H.V., & Ulvskov, P. (2010). Hemicelluloses. Annu. Rev. Plant Biol., 61, 262-289.
51. Fengel, D., & Wegener, G. (2011). Wood: chemistry, ultrastructure, reactions. New York: Walter de Gruyter.
52. Sjöström, E. (1993). Wood chemistry: fundamentals and applications. San Diego: Gulf Professional Publishing.
53. Zhou, X., Li, W., Mabon, R., & Broadbelt, L.J. (2017). A critical review on hemicellulose pyrolysis. Energy Technol. (Weinh.), 5, 52-79.
54. Zavarin, E., Cool, L.G., & Jones, S.J. (1991). Analysis of solid wood surfaces by internal reflection fourier transform infrared spectroscopy (FTIR-IRS). J. Wood Chem. Tech., 11, 41-56.
55. Bootten, T.J., Harris, P.J., Melton, L.D., & Newman, R.H. (2011). Using solid-state 13 C NMR spectroscopy to study the molecular organisation of primary plant cell walls. Methods Mol. Biol., 715, 179-196.
56. Newman, R.H., Davies, L.M., & Harris, P.J. (1996). Solid-State 13C Nuclear Magnetic Resonance Characterization of Cellulose in the Cell Walls of Arabidopsis thaliana Leaves. Plant Physiol., 111, 475-485.
57. Özgenç, Ö., Durmaz, S., Boyaci, I.H., & Eksi-Kocak, H. (2017). Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 171, 395-400.
58. Pandey, K.K. (1999). A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. Symp., 71, 1969-1975.
59. Hobro, A.J., Kuligowski, J., Döll, M., & Lendl, B. (2010). Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Anal. Bioanal. Chem., 398, 2713-2722.
60. Ganne-Chédeville, C., Jääskeläinen, A.-S., Froidevaux, J., Hughes, M., & Navi, P. (2012). Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung, 66, 163-170.
61. Faix, O. (1991). Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung, 45, 21-28.
62. Faix, O. (1992). Fourier Transform Infrared Spectroscopy. In Lin S.Y., Dence C.W. (Eds.), Methods in Lignin Chemistry (pp.83-109). Berlin, Heidelberg: Springer.
63. Pandey, K.K., & Pitman, A.J. (2003). FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegradation, 52, 151-160.
64. Müller, G.S. (2008). FTIR-ATR spectroscopic and FTIR-FPA microscopic investigations on panel board production processes using Grand fir (Abies grandis (Douglas ex D. Don) Lindl.) and European beech (Fagus sylvatica L.). (Doctoral dissertation, Georg-August-Universität Göttingen, 2008) Dissertationen der Georg-August-Universität Göttingen.
65. Reale, S., Di Tullio, A., Spreti, N., & De Angelis, F. (2004). Mass spectrometry in the biosynthetic and structural investigation of lignins. Mass Spectrom. Rev., 23, 87-126.
66. Pandey, M.P., & Kim, C.S. (2011). Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol., 34, 29-41.
67. Dorrestijn, E., Laarhoven, L.J., Arends, I.W., & Mulder, P. (2000). The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis, 54, 153-192.
68. McDonough, T.J. (1993). The chemistry of organosolv delignification. Tappi J., 76(8), 186-193.
69. Mackey, E.A., Becker, D.A., Oflaz, R.D., Greenberg, R.R., Lindstrom, R.M., Lee, L.Y., Wood, L.J., Long, S.E., Kelly, W.R., & Mann, J.L. (2004). Certification of NIST standard reference material 1575a pine needles and results of an international laboratory comparison. J. Res. Natl. Inst. Stand. Technol., 260-156.
70. BRUKER OPTIK GmbH. (2006). OPUS Spectroscopy Software User Manual QUANT (6th ed.).
71. Pizzo, B., Pecoraro, E., Alves, A., Macchioni, N., & Rodrigues, J.C. (2015). Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Talanta, 131, 14-20.
72. Kong, F., Engler, C.R., & Soltes, E.J.J.A.b. (1992). Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl. Biochem. Biotechnol., 34, 23-35.
73. Zanuttini, M., Marzocchi, V., Citroni, M., & Mocchiutti, P. (2003). Alkali impregnation of hardwoods. Part I: Moderate treatment of poplar wood. JPPS, 29, 313-317.
74. Zanuttini, M., Marzocchi, V., Mocchiutti, P., & Inalbon, M. (2005). Deacetylation consequences in pulping processes. Holz Roh Werkst, 63, 149-153.
75. Popescu, C.-M., Dobele, G., Rossinskaja, G., Dizhbite, T., & Vasile, C. (2007). Degradation of lime wood painting supports: evaluation of changes in the structure of aged lime wood by different physico-chemical methods. J. Anal. Appl. Pyrolysis, 79, 71-77.
76. Delbecq, F., Wang, Y., Muralidhara, A., El Ouardi, K., Marlair, G., & Len, C. (2018). Hydrolysis of hemicellulose and derivatives—A review of recent advances in the production of furfural. Front. Chem., 6, 146.
77. Tai, H.C., Li, G.C., Huang, S.J., Jhu, C.R., Chung, J.H., Wang, B.Y., Hsu, C.S., Brandmair, B., Chung, D.T., Chen, H.M., et al. (2017). Chemical distinctions between Stradivari’s maple and modern tonewood. Proc. Natl. Acad. Sci. U.S.A., 114, 27-32.
78. Bhardwaj, N.K., Dang, V.Q., & Nguyen, K.L. (2006). Determination of carboxyl content in high-yield kraft pulps using photoacoustic rapid-scan Fourier transform infrared spectroscopy. Anal. Chem. Res., 78, 6818-6825.
79. Müller, U., Rätzsch, M., Schwanninger, M., Steiner, M., & Zöbl, H. (2003). Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B, Biol., 69, 97-105.
80. Richardson, B.A. (2003). Wood preservation (2nd ed.). London: Routledge.
81. Fleurat-Lessard, P., Dédaldéchamp, F., Thibault, F., Béré, E., & Roblin, G. (2011). Antifungal effects of iron sulfate on grapevine fungal pathogens. Sci. Hortic., 130, 517-523.
82. Siriwardana, H., Abeywickrama, K., Kannangara, S., & Jayawardena, B. (2017). Control of Postharvest Crown Rot Disease in Cavendish Banana with Aluminium Sulfate and Vacuum Packaging. J. Agric. Sci. (Belihuloya), 12.
83. Rowe, J.W. (1979). Extractives in eastern hardwoods: a review. Gen. Tech. Rep. USDA FPL-18., 1-67.
84. Bendtsen, B. (1966). Sorption and swelling characteristics of salt-treated wood. US Forest Service Research Paper FPL-60, 1-44.
85. Nagyvary, J. (1978). The history and interpretation of chemical knowledge available to violin makers. J. Violin Soc. Am., 4, 147-176.
86. Wang, X., Wang, C., & Zhao, H. (2012). Errors in the Calculation of 27Al Nuclear Magnetic Resonance Chemical Shifts. Int. J. Mol. Sci., 13, 15420-15446.
87. Zhao, Z., Xu, S., Hu, M.Y., Bao, X., Peden, C.H., & Hu, J. (2014). Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High-Field Solid-State NMR. J. Phys. Chem. C, 119, 1410-1417.
88. Haouas, M., Taulelle, F., & Martineau, C. (2016). Recent advances in application of 27Al NMR spectroscopy to materials science. Prog. Nucl. Magn. Reson. Spectrosc., 94, 11-36.
89. Kránitz, K., Sonderegger, W., Bues, C.-T., & Niemz, P. (2016). Effects of aging on wood: a literature review. WoodSci. Tech., 50, 7-22.
90. Balakshin, M., Capanema, E., Gracz, H., Chang, H.-m., & Jameel, H. (2011). Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta, 233, 1097-1110.
91. Esteves, B., Velez Marques, A., Domingos, I., & Pereira, H. (2013). Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Ciencia y tecnología, 15(2), 245-258.
92. Li, J., Li, B., & Zhang, X. (2002). Comparative studies of thermal degradation between larch lignin and manchurian ash lignin. Polymer degradation and stability. Polym. Degrad. Stab., 78, 279-285.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/728-
dc.description.abstract史特拉底瓦里和瓜奈里所製造的樂器普遍被認為具有超凡的音色及品質,因此過去三個世紀,許多學者和製琴師投入了大量的精力來找出克里蒙納名琴的秘密及關鍵,其中一個假說是克里蒙納製琴師所使用的木材性質與現代的木材有所不同。因此我們針對了現代木材、歐洲古建築和克里蒙納提琴中的楓木和雲杉樣品進行了分析,並發現了克里蒙納樂器具備獨特的特徵:經由衰減全反射-傅立葉變換紅外光譜(attenuated total reflection-Fourier-transform infrared,ATR-FTIR),我們觀察到在名琴中發生了半纖維素的脫乙醯化和木質素特殊的氧化,後者增加了名琴樣品的羰基含量,並且在13C多重交叉極化核磁共振光譜(13C multiple cross-polarization nuclear magnetic resonance spectroscopy,multiCP NMR)也觀察到相同的結果;另外藉由電感耦合電漿體質譜法(inductively coupled plasma-mass spectrometry,ICP-MS),我們觀察到史特拉底瓦里和瓜奈里提琴中的一些元素含量異常增加,尤其是具有大量的Na、Cl、K、Ca和Al,其中這些元素並非來自於木材生長的自然環境、也不是來自於人為的污染而極有可能來自於製琴師在木材處理上施加了各自的化學配方;為了確認Al在克里蒙納名琴中的功能而測量了27Al核磁共振光譜(27Al magic angle spinning NMR,27Al MAS NMR),其中在名琴樣品中發現了六配位和四配位的Al,而現代木材中僅有六配位的Al;另外以同步輻射X-射線繞射分析(X-ray diffraction,XRD)觀察到纖維素的結晶度在名琴中保持完整,結晶狀的區域大小沒有明顯的改變。綜合以上結果,克里蒙納的製琴師們很可能將木材泡入礦物質的溶液使木材吸收礦物質,並藉此改變了木材的性質,化學處理搭配上自然老化以及長時間振動可能是重現克里蒙納名琴超群聲音的關鍵。zh_TW
dc.description.abstractSo far, the violins made by Antonio Stradivari and Giuseppe Guarneri were generally considered as having extraordinary quality over three centuries. Therefore, lots of scholars and luthiers invested their lives to figure out the secrets in Cremonese violins, and one of the hypotheses is that the wood properties used by Cremonese luthiers are different from modern tonewood. Analyses of maple and spruce samples removed from modern tonewood, old buildings and Cremonese instruments were implemented, and the unique characteristics in Cremonese instruments were revealed. By attenuated total reflection-Fourier-transform infrared (ATR-FTIR), we observed the deacetylation in hemicellulose and unusual oxidation in lignin which increased carbonyl in Cremonese samples. The similar result was also observed by 13C multiple cross-polarization nuclear magnetic resonance (multiCP NMR) spectroscopy. By inductively coupled plasma-mass spectrometry (ICP-MS), we observed unusual elemental profiles in Stradivari and Guarneri violins, especially the increases of Na, Cl, K, Ca and Al, which cannot be explained by natural variations or human contamination, and may have come from the chemical recipe for wood treatment. To find out the function of Al inside the Cremonese instruments, 27Al magic angle spinning (MAS) NMR spectra were measured, and six- and four-coordinate Al were confirmed, while only six-coordinate Al was observed in modern tonewood. The crystallinity of cellulose remains intact and without obvious alteration in the domain sizes measured by synchrotron X-ray diffraction (XRD). From the combined results of these analytical methods, the Cremonese luthiers were likely to have soaked the wood into the mineral solution to make the wood absorb the minerals, thereby changing the properties of wood. It seemed that the combination of chemical treatments, natural aging, and long-tern vibration could be the key to reproduce the extraordinary sound of the Cremonese violins.en
dc.description.provenanceMade available in DSpace on 2021-05-11T05:00:12Z (GMT). No. of bitstreams: 1
ntu-108-R06223125-1.pdf: 9839816 bytes, checksum: df2977e196a5b0a562fb6886002e7d29 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xii
縮寫一覽 xiii
第一章 緒論 1
1.1 研究目的 1
1.2 研究假說 1
1.3 研究架構 2
第二章 背景與文獻探討 4
2.1 安東尼奧·史特拉底瓦里的介紹 4
2.2 有關克里蒙納名琴的假說 6
2.2.1 小提琴的聲學、結構 6
2.2.2 蒙德極小期(Maunder Minimum) 8
2.2.3 木材密度測定法(Densitometry) 8
2.2.4 史特拉底瓦里琴的塗漆 9
2.2.5 化學處理 10
2.2.6 真菌處理 11
2.3 木材結構 13
2.4 木材的化學組成 16
2.5 樹木細胞壁的結構 17
2.6 木材中的聚合物 19
2.6.1 纖維素 19
2.6.2 半纖維素 29
2.6.3 木質素 34
第三章 實驗材料及方法 38
3.1 實驗材料 38
3.1.1 實驗設備 38
3.1.2 藥品耗材 39
3.1.3 木材樣品 39
3.1.4 人為處理木材樣品 44
3.2 實驗方法 44
3.2.1 固態核磁共振儀 44
3.2.2 X-射線繞射分析 45
3.2.3 電感耦合等離子體質譜法 46
3.2.4 衰減全反射-傅里葉轉換紅外光譜 46
3.2.5 統計分析 47
第四章 實驗結果及討論 48
4.1 克里蒙納名琴中的半纖維素含量變化 48
4.2 克里蒙納雲杉中的纖維素結晶性保持完整 55
4.3 克里蒙納名琴樣品中的聚合物氧化 60
4.4 克里蒙納名琴化學處理的相關發現 62
4.5 克里蒙納名琴雲杉中聚合物和鋁的交聯 67
4.6 木材中聚合物變化與化學處理的關聯 71
第五章 結論 76
未來研究方向 77
附錄 78
參考資料 107
dc.language.isozh-TW
dc.title克里蒙納名琴木材的化學處理zh_TW
dc.titleChemical treatment of wood in Cremonese violinsen
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳浩銘,蘇正寬
dc.subject.keyword克雷蒙納名琴,雲杉,楓木,衰減全反射-傅立葉變換紅外光譜,固態核磁共振光譜,電感耦合電漿體質譜法,X-射線繞射分析,zh_TW
dc.subject.keywordCremonese violins,spruce,maple,ATR-FTIR,solid state NMR,ICP-MS,XRD,en
dc.relation.page117
dc.identifier.doi10.6342/NTU201904282
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-11-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf9.61 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved