請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72893
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 簡國龍(Kuo-Liong Chien) | |
dc.contributor.author | Wan-Chuan Tsai | en |
dc.contributor.author | 蔡萬全 | zh_TW |
dc.date.accessioned | 2021-06-17T07:09:28Z | - |
dc.date.available | 2019-08-26 | |
dc.date.copyright | 2019-08-26 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-23 | |
dc.identifier.citation | 1. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260-272.
2. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459-1544. 3. Yang WC, Hwang SJ. Incidence, prevalence and mortality trends of dialysis end-stage renal disease in Taiwan from 1990 to 2001: the impact of national health insurance. Nephrol Dial Transplant. 2008;23(12):3977-3982. 4. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80(12):1258-1270. 5. Saran R, Li Y, Robinson B, et al. US Renal Data System 2015 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2016;67(3 Suppl 1):A7-8. 6. Wen CP, Matsushita K, Coresh J, et al. Relative risks of chronic kidney disease for mortality and end-stage renal disease across races are similar. Kidney Int. 2014;86(4):819-827. 7. Middleton RJ, Parfrey PS, Foley RN. Left ventricular hypertrophy in the renal patient. J Am Soc Nephrol. 2001;12(5):1079-1084. 8. Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073-2081. 9. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296-1305. 10. Foley RN, Parfrey PS, Sarnak MJ. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol. 1998;9(12 Suppl):S16-23. 11. Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension. 2003;42(5):1050-1065. 12. Collins AJ, Foley R, Herzog C, et al. Excerpts from the United States Renal Data System 2007 annual data report. Am J Kidney Dis. 2008;51(1 Suppl 1):S1-320. 13. Saran R, Robinson B, Abbott KC. US Renal Data System 2018 Annual Data Report: epidemiology of kidney disease in the United States Am J Kidney Dis. 2018;71(3 (suppl 1)):Svii,S1-S672. 14. van der Zee S, Baber U, Elmariah S, Winston J, Fuster V. Cardiovascular risk factors in patients with chronic kidney disease. Nat Rev Cardiol. 2009;6(9):580-589. 15. Stenvinkel P, Carrero JJ, Axelsson J, Lindholm B, Heimburger O, Massy Z. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clin J Am Soc Nephrol. 2008;3(2):505-521. 16. Ortiz A, Covic A, Fliser D, et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet. 2014;383(9931):1831-1843. 17. Major RW, Cheng MRI, Grant RA, et al. Cardiovascular disease risk factors in chronic kidney disease: A systematic review and meta-analysis. PLoS One. 2018;13(3):e0192895. 18. Raj DS, Carrero JJ, Shah VO, et al. Soluble CD14 levels, interleukin 6, and mortality among prevalent hemodialysis patients. Am J Kidney Dis. 2009;54(6):1072-1080. 19. Stenvinkel P, Heimburger O, Paultre F, et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999;55(5):1899-1911. 20. Scialla JJ, Wolf M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol. 2014;10(5):268-278. 21. Jono S, McKee MD, Murry CE, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87(7):E10-17. 22. Shroff RC, McNair R, Skepper JN, et al. Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J Am Soc Nephrol. 2010;21(1):103-112. 23. Stevens KK, Denby L, Patel RK, et al. Deleterious effects of phosphate on vascular and endothelial function via disruption to the nitric oxide pathway. Nephrol Dial Transplant. 2017;32(10):1617-1627. 24. Di Marco GS, Konig M, Stock C, et al. High phosphate directly affects endothelial function by downregulating annexin II. Kidney Int. 2013;83(2):213-222. 25. Adeney KL, Siscovick DS, Ix JH, et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol. 2009;20(2):381-387. 26. Linefsky JP, O'Brien KD, Katz R, et al. Association of serum phosphate levels with aortic valve sclerosis and annular calcification: the cardiovascular health study. J Am Coll Cardiol. 2011;58(3):291-297. 27. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393-4408. 28. Scialla JJ, Xie H, Rahman M, et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014;25(2):349-360. 29. Grabner A, Amaral AP, Schramm K, et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metab. 2015;22(6):1020-1032. 30. Mundy GR, Guise TA. Hormonal Control of Calcium Homeostasis. Clinical Chemistry. 1999;45(8):1347. 31. Russell RG. Regulation of calcium metabolism. Ann Clin Biochem. 1976;13(6):518-539. 32. Pavik I, Jaeger P, Ebner L, et al. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant. 2013;28(2):352-359. 33. Houillier P, Froissart M, Maruani G, Blanchard A. What serum calcium can tell us and what it can't. Nephrol Dial Transplant. 2006;21(1):29-32. 34. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral Metabolism, Mortality, and Morbidity in Maintenance Hemodialysis. J Am Soc Nephrol. 2004;15(8):2208. 35. Floege J, Kim J, Ireland E, et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant. 2011;26(6):1948-1955. 36. Palmer SC, Hayen A, Macaskill P, et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA. 2011;305(11):1119-1127. 37. Floege J, Kim J, Ireland E, et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant. 2011;26(6):1948-1955. 38. Goodman WG, Goldin J, Kuizon BD, et al. Coronary-Artery Calcification in Young Adults with End-Stage Renal Disease Who Are Undergoing Dialysis. N Engl J Med. 2000;342(20):1478-1483. 39. Block GA, Wheeler DC, Persky MS, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol. 2012;23(8):1407-1415. 40. National Kidney Foundation: K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42(4 Suppl 3):S1-S201. 41. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266-281. 42. Norman AW, Okamura WH, Bishop JE, Henry HL. Update on biological actions of 1alpha,25(OH)2-vitamin D3 (rapid effects) and 24R,25(OH)2-vitamin D3. Mol Cell Endocrinol. 2002;197(1-2):1-13. 43. Dusso AS, Tokumoto M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: a downward spiral in kidney disease. Kidney Int. 2011;79(7):715-729. 44. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005;289(1):F8-28. 45. Pitts TO, Piraino BH, Mitro R, et al. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab. 1988;67(5):876-881. 46. Ishimura E, Nishizawa Y, Inaba M, et al. Serum levels of 1,25-dihydroxyvitamin D, 24,25-dihydroxyvitamin D, and 25-hydroxyvitamin D in nondialyzed patients with chronic renal failure. Kidney Int. 1999;55(3):1019-1027. 47. Patel SR, Ke HQ, Vanholder R, Koenig RJ, Hsu CH. Inhibition of calcitriol receptor binding to vitamin D response elements by uremic toxins. J Clin Invest. 1995;96(1):50-59. 48. Sawaya BP, Koszewski NJ, Qi Q, Langub MC, Monier-Faugere MC, Malluche HH. Secondary hyperparathyroidism and vitamin D receptor binding to vitamin D response elements in rats with incipient renal failure. J Am Soc Nephrol. 1997;8(2):271-278. 49. Wolf M, Shah A, Gutierrez O, et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int. 2007;72(8):1004-1013. 50. Teng M, Wolf M, Ofsthun MN, et al. Activated Injectable Vitamin D and Hemodialysis Survival: A Historical Cohort Study. J Am Soc Nephrol. 2005;16(4):1115. 51. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med. 2003;349(5):446-456. 52. Tentori F, Hunt WC, Stidley CA, et al. Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int. 2006;70(10):1858-1865. 53. Palmer SC, McGregor DO, Craig JC, Elder G, Macaskill P, Strippoli GF. Vitamin D compounds for people with chronic kidney disease requiring dialysis. Cochrane Database Syst Rev. 2009(4):Cd005633. 54. Tabata T, Shoji T, Kikunami K, et al. In vivo effect of 1 alpha-hydroxyvitamin D3 on interleukin-2 production in hemodialysis patients. Nephron. 1988;50(4):295-298. 55. Tokuda N, Kano M, Meiri H, Nomoto K, Naito S. Calcitriol therapy modulates the cellular immune responses in hemodialysis patients. Am J Nephrol. 2000;20(2):129-137. 56. Timms PM, Mannan N, Hitman GA, et al. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders? Qjm. 2002;95(12):787-796. 57. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110(2):229-238. 58. Li YC. Vitamin D regulation of the renin-angiotensin system. J Cell Biochem. 2003;88(2):327-331. 59. Yamamoto T, Kozawa O, Tanabe K, et al. 1,25-dihydroxyvitamin D3 stimulates vascular endothelial growth factor release in aortic smooth muscle cells: role of p38 mitogen-activated protein kinase. Arch Biochem Biophys. 2002;398(1):1-6. 60. Zittermann A, Schleithoff SS, Tenderich G, Berthold HK, Korfer R, Stehle P. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol. 2003;41(1):105-112. 61. Park CW, Oh YS, Shin YS, et al. Intravenous calcitriol regresses myocardial hypertrophy in hemodialysis patients with secondary hyperparathyroidism. Am J Kidney Dis. 1999;33(1):73-81. 62. Mehrotra R, Kermah D, Budoff M, et al. Hypovitaminosis D in Chronic Kidney Disease. Clin J Am Soc Nephrol. 2008;3(4):1144. 63. Ravani P, Malberti F, Tripepi G, et al. Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int. 2009;75(1):88-95. 64. Singer RF. Vitamin D in dialysis: defining deficiency and rationale for supplementation. Semin Dial. 2013;26(1):40-46. 65. Souberbielle JC, Body JJ, Lappe JM, et al. Vitamin D and musculoskeletal health, cardiovascular disease, autoimmunity and cancer: Recommendations for clinical practice. Autoimmun Rev. 2010;9(11):709-715. 66. Goldsmith DJ. Pro: Should we correct vitamin D deficiency/insufficiency in chronic kidney disease patients with inactive forms of vitamin D or just treat them with active vitamin D forms? Nephrol Dial Transplant. 2016;31(5):698-705. 67. Agarwal R, Georgianos PI. Con: Nutritional vitamin D replacement in chronic kidney disease and end-stage renal disease. Nephrol Dial Transplant. 2016;31(5):706-713. 68. Zoccali C, Mallamaci F. Moderator's view: Vitamin D deficiency treatment in advanced chronic kidney disease: a close look at the emperor's clothes. Nephrol Dial Transplant. 2016;31(5):714-716. 69. Lofrese JJ, Lappin SL. Physiology, Parathyroid. StatPearls. Treasure Island (FL): StatPearls Publishing LLC.; 2018. 70. Mannstadt M, Juppner H, Gardella TJ. Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Physiol. 1999;277(5):F665-675. 71. Llach F, Forero FV. Secondary hyperparathyroidism in chronic renal failure: Pathogenic and clinical aspects. Am J Kidney Dis. 2001;38(5):S20-S33. 72. Slatopolsky E, Caglar S, Gradowska L, Canterbury J, Reiss E, Bricker NS. On the prevention of secondary hyperparathyroidism in experimental chronic renal disease using 'proportional reduction' of dietary phosphorus intake. Kidney Int. 1972;2(3):147-151. 73. Slatopolsky E, Bricker NS. The role of phosphorus restriction in the prevention of secondary hyperparathyroidism in chronic renal disease. Kidney Int. 1973;4(2):141-145. 74. McCarthy JT, Kumar R. Behavior of the vitamin D endocrine system in the development of renal osteodystrophy. Semin Nephrol. 1986;6(1):21-30. 75. Brown AJ, Dusso A, Lopez-Hilker S, Lewis-Finch J, Grooms P, Slatopolsky E. 1,25-(OH)2D receptors are decreased in parathyroid glands from chronically uremic dogs. Kidney Int. 1989;35(1):19-23. 76. Ritter CS, Martin DR, Lu Y, Slatopolsky E, Brown AJ. Reversal of secondary hyperparathyroidism by phosphate restriction restores parathyroid calcium-sensing receptor expression and function. J Bone Miner Res. 2002;17(12):2206-2213. 77. Naveh-Many T, Sela-Brown A, Silver J. Protein-RNA interactions in the regulation of PTH gene expression by calcium and phosphate. Nephrol Dial Transplant. 1999;14(4):811-813. 78. Nii-Kono T, Iwasaki Y, Uchida M, et al. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007;71(8):738-743. 79. Ureña P, Mannstadt M, Hruby M, et al. Parathyroidectomy does not prevent the renal PTH/PTHrP receptor down-regulation in uremic rats. Kidney Int. 1995;47(6):1797-1805. 80. Picton ML, Moore PR, Mawer EB, et al. Down-regulation of human osteoblast PTH/PTHrP receptor mRNA in end-stage renal failure. Kidney Int. 2000;58(4):1440-1449. 81. Slatopolsky E, Finch J, Clay P, et al. A novel mechanism for skeletal resistance in uremia. Kidney Int. 2000;58(2):753-761. 82. Hocher B, Armbruster FP, Stoeva S, et al. Measuring parathyroid hormone (PTH) in patients with oxidative stress--do we need a fourth generation parathyroid hormone assay? PLoS One. 2012;7(7):e40242. 83. Lund RJ, Davies MR, Brown AJ, Hruska KA. Successful Treatment of an Adynamic Bone Disorder with Bone Morphogenetic Protein-7 in a Renal Ablation Model. J Am Soc Nephrol. 2004;15(2):359. 84. Naves-Diaz M, Passlick-Deetjen J, Guinsburg A, et al. Calcium, phosphorus, PTH and death rates in a large sample of dialysis patients from Latin America. The CORES Study. Nephrol Dial Transplant. 2011;26(6):1938-1947. 85. Bhuriya R, Li S, Chen SC, McCullough PA, Bakris GL. Plasma parathyroid hormone level and prevalent cardiovascular disease in CKD stages 3 and 4: an analysis from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis. 2009;53(4 Suppl 4):S3-10. 86. Chue CD, Edwards NC, Moody WE, Steeds RP, Townend JN, Ferro CJ. Serum phosphate is associated with left ventricular mass in patients with chronic kidney disease: a cardiac magnetic resonance study. Heart. 2012;98(3):219-224. 87. Thadhani R, Appelbaum E, Chang Y, et al. Vitamin D receptor activation and left ventricular hypertrophy in advanced kidney disease. Am J Nephrol. 2011;33(2):139-149. 88. Garrett G, Sardiwal S, Lamb EJ, Goldsmith DJ. PTH--a particularly tricky hormone: why measure it at all in kidney patients? Clin J Am Soc Nephrol. 2013;8(2):299-312. 89. Isakova T, Xie H, Barchi-Chung A, et al. Daily variability in mineral metabolites in CKD and effects of dietary calcium and calcitriol. Clin J Am Soc Nephrol. 2012;7(5):820-828. 90. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370-1378. 91. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2017;7(1):1-59. 92. Slatopolsky E, Finch J, Denda M, et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest. 1996;97(11):2534-2540. 93. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(3):519-530. 94. Uribarri J. Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake. Semin Dial. 2007;20(4):295-301. 95. Bricker NS. On the pathogenesis of the uremic state. An exposition of the 'trade-off hypothesis'. N Engl J Med. 1972;286(20):1093-1099. 96. Portale AA, Booth BE, Halloran BP, Morris RC, Jr. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73(6):1580-1589. 97. Portale AA, Halloran BP, Murphy MM, Morris RC, Jr. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest. 1986;77(1):7-12. 98. Lopez-Hilker S, Galceran T, Chan YL, Rapp N, Martin KJ, Slatopolsky E. Hypocalcemia may not be essential for the development of secondary hyperparathyroidism in chronic renal failure. J Clin Invest. 1986;78(4):1097-1102. 99. Wilson L, Felsenfeld A, Drezner MK, Llach F. Altered divalent ion metabolism in early renal failure: role of 1,25(OH)2D. Kidney Int. 1985;27(3):565-573. 100. Moe S, Drueke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945-1953. 101. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res. 2012;318(9):1040-1048. 102. Locatelli F. The need for better control of secondary hyperparathyroidism. Nephrol Dial Transplant. 2004;19 Suppl 5:V15-19. 103. Port FK, Pisoni RL, Bommer J, et al. Improving outcomes for dialysis patients in the international Dialysis Outcomes and Practice Patterns Study. Clin J Am Soc Nephrol. 2006;1(2):246-255. 104. Tsai WC, Yang JY, Luan CC, et al. Additional benefit of dietitian involvement in dialysis staffs-led diet education on uncontrolled hyperphosphatemia in hemodialysis patients. Clin Exp Nephrol. 2016;20(5):815-821. 105. Giachelli CM. The emerging role of phosphate in vascular calcification. Kidney Int. 2009;75(9):890-897. 106. Hruska KA, Mathew S, Lund R, Qiu P, Pratt R. Hyperphosphatemia of chronic kidney disease. Kidney Int. 2008;74(2):148-157. 107. Tonelli M, Pannu N, Manns B. Oral phosphate binders in patients with kidney failure. N Engl J Med. 2010;362(14):1312-1324. 108. Covic A, Kothawala P, Bernal M, Robbins S, Chalian A, Goldsmith D. Systematic review of the evidence underlying the association between mineral metabolism disturbances and risk of all-cause mortality, cardiovascular mortality and cardiovascular events in chronic kidney disease. Nephrol Dial Transplant. 2009;24(5):1506-1523. 109. Tentori F, Blayney MJ, Albert JM, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2008;52(3):519-530. 110. Kalantar-Zadeh K, Kuwae N, Regidor DL, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int. 2006;70(4):771-780. 111. Kestenbaum B, Sampson JN, Rudser KD, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16(2):520-528. 112. Cozzolino M, Brancaccio D, Gallieni M, Slatopolsky E. Pathogenesis of vascular calcification in chronic kidney disease. Kidney Int. 2005;68(2):429-436. 113. Chen NX, O'Neill KD, Duan D, Moe SM. Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int. 2002;62(5):1724-1731. 114. Moe SM, Duan D, Doehle BP, O'Neill KD, Chen NX. Uremia induces the osteoblast differentiation factor Cbfa1 in human blood vessels. Kidney Int. 2003;63(3):1003-1011. 115. Shuto E, Taketani Y, Tanaka R, et al. Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol. 2009;20(7):1504-1512. 116. Chauveau P, Poignet JL, Kuno T, et al. Phosphate removal rate: a comparative study of five high-flux dialysers. Nephrol Dial Transplant. 1991;6 Suppl 2:114-115. 117. Kuhlmann MK. Phosphate elimination in modalities of hemodialysis and peritoneal dialysis. Blood Purif. 2010;29(2):137-144. 118. Gotch FA, Panlilio F, Sergeyeva O, et al. A kinetic model of inorganic phosphorus mass balance in hemodialysis therapy. Blood Purif. 2003;21(1):51-57. 119. Isakova T, Gutiérrez OM, Chang Y, et al. Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol. 2009;20(2):388-396. 120. Alfrey AC. Aluminum toxicity in patients with chronic renal failure. Ther Drug Monit. 1993;15(6):593-597. 121. Ron B. Schifman, Daniel R. Luevano. Aluminum Toxicity. Arch Pathol Lab Med. 2018;142:742-746. 122. Ketteler M, Block GA, Evenepoel P, et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what's changed and why it matters. Kidney Int. 2017;92(1):26-36. 123. Jamal SA, Vandermeer B, Raggi P, et al. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382(9900):1268-1277. 124. Hiremath S, Akbari A. Calcium-based phosphate binders and chronic kidney disease. Lancet. 2014;383(9913):216. 125. Suki WN. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients: results of a randomized clinical trial. J Ren Nutr. 2008;18(1):91-98. 126. Winkelmayer WC, Tonelli M. Phosphate binder choice in dialysis patients: a call for evidence-based rather than marketing-based clinical practice. Am J Kidney Dis. 2008;51(3):362-365. 127. Chiu YW, Teitelbaum I, Misra M, de Leon EM, Adzize T, Mehrotra R. Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clin J Am Soc Nephrol. 2009;4(6):1089-1096. 128. Sprague SM, Ross EA, Nath SD, Zhang P, Pratt RD, Krause R. Lanthanum carbonate vs. sevelamer hydrochloride for the reduction of serum phosphorus in hemodialysis patients: a crossover study. Clin Nephrol. 2009;72(4):252-258. 129. Daugirdas JT, Finn WF, Emmett M, Chertow GM. The phosphate binder equivalent dose. Semin Dial. 2011;24(1):41-49. 130. Cupisti A, Kalantar-Zadeh K. Management of natural and added dietary phosphorus burden in kidney disease. Semin Nephrol. 2013;33(2):180-190. 131. Beto J, Bhatt N, Gerbeling T, Patel C, Drayer D. Overview of the 2017 KDIGO CKD-MBD Update: Practice Implications for Adult Hemodialysis Patients. J Ren Nutr. 2018. 132. Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61:91-104. 133. Radanovic T, Wagner CA, Murer H, Biber J. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine. Am J Physiol Gastrointest Liver Physiol. 2005;288(3):G496-500. 134. Craver L, Marco MP, Martinez I, et al. Mineral metabolism parameters throughout chronic kidney disease stages 1-5--achievement of K/DOQI target ranges. Nephrol Dial Transplant. 2007;22(4):1171-1176. 135. Wu SJ, Pan WH, Yeh NH, Chang HY. Trends in nutrient and dietary intake among adults and the elderly: from NAHSIT 1993-1996 to 2005-2008. Asia Pac J Clin Nutr. 2011;20(2):251-265. 136. Ramirez JA, Emmett M, White MG, et al. The absorption of dietary phosphorus and calcium in hemodialysis patients. Kidney Int. 1986;30(5):753-759. 137. McClure ST, Chang AR, Selvin E, Rebholz CM, Appel LJ. Dietary Sources of Phosphorus among Adults in the United States: Results from NHANES 2001-2014. Nutrients. 2017;9(2):95. 138. Boaz M, Smetana S. Regression equation predicts dietary phosphorus intake from estimate of dietary protein intake. J Am Diet Assoc. 1996;96(12):1268-1270. 139. St-Jules DE, Jagannathan R, Gutekunst L, Kalantar-Zadeh K, Sevick MA. Examining the Proportion of Dietary Phosphorus From Plants, Animals, and Food Additives Excreted in Urine. J Ren Nutr. 2017;27(2):78-83. 140. Soares JH. 12 - Phosphorus bioavailability. In: Ammerman CB, Baker DH, Lewis AJ, eds. Bioavailability of Nutrients for Animals. San Diego: Academic Press; 1995:257-294. 141. Karp H, Ekholm P, Kemi V, Hirvonen T, Lamberg-Allardt C. Differences among total and in vitro digestible phosphorus content of meat and milk products. J Ren Nutr. 2012;22(3):344-349. 142. Karp H, Ekholm P, Kemi V, et al. Differences among total and in vitro digestible phosphorus content of plant foods and beverages. J Ren Nutr. 2012;22(4):416-422. 143. Schlemmer U, Frolich W, Prieto RM, Grases F. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res. 2009;53 Suppl 2:S330-375. 144. Kalantar-Zadeh K, Tortorici AR, Chen JL, et al. Dietary restrictions in dialysis patients: is there anything left to eat? Semin Dial. 2015;28(2):159-168. 145. Shinaberger CS, Greenland S, Kopple JD, et al. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease? Am J Clin Nutr. 2008;88(6):1511-1518. 146. Kopple JD, Fouque D. Pro: The rationale for dietary therapy for patients with advanced chronic kidney disease. Nephrol Dial Transplant. 2018;33(3):373-378. 147. Rufino M, de Bonis E, Martin M, et al. Is it possible to control hyperphosphataemia with diet, without inducing protein malnutrition? Nephrol Dial Transplant. 1998;13 Suppl 3:65-67. 148. Barril-Cuadrado G, Puchulu MB, Sanchez-Tomero JA. Table showing dietary phosphorus/protein ratio for the Spanish population. Usefulness in chronic kidney disease. Nefrologia. 2013;33(3):362-371. 149. Noori N, Kalantar-Zadeh K, Kovesdy CP, Bross R, Benner D, Kopple JD. Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients. Clin J Am Soc Nephrol. 2010;5(4):683-692. 150. Uribarri J, Calvo MS. Hidden sources of phosphorus in the typical American diet: does it matter in nephrology? Semin Dial. 2003;16(3):186-188. 151. Calvo MS. Dietary considerations to prevent loss of bone and renal function. Nutrition. 2000;16(7-8):564-566. 152. Bell RR, Draper HH, Tzeng DY, Shin HK, Schmidt GR. Physiological responses of human adults to foods containing phosphate additives. J Nutr. 1977;107(1):42-50. 153. Benini O, D'Alessandro C, Gianfaldoni D, Cupisti A. Extra-phosphate load from food additives in commonly eaten foods: a real and insidious danger for renal patients. J Ren Nutr. 2011;21(4):303-308. 154. Calvo MS, Park YK. Changing phosphorus content of the U.S. diet: potential for adverse effects on bone. J Nutr. 1996;126(4 Suppl):1168s-1180s. 155. Oenning LL, Vogel J, Calvo MS. Accuracy of methods estimating calcium and phosphorus intake in daily diets. J Am Diet Assoc. 1988;88(9):1076-1080. 156. Sullivan C, Sayre SS, Leon JB, et al. Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA. 2009;301(6):629-635. 157. Bohn L, Meyer AS, Rasmussen SK. Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B. 2008;9(3):165-191. 158. Xu X, Xiao S, Rahardjo TB, Hogervorst E. Tofu intake is associated with poor cognitive performance among community-dwelling elderly in China. J Alzheimers Dis. 2015;43(2):669-675. 159. Messina M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients. 2016;8(12). 160. Kelemen LE, Kushi LH, Jacobs JDR, Cerhan JR. Associations of Dietary Protein with Disease and Mortality in a Prospective Study of Postmenopausal Women. Am J Epidemiol. 2005;161(3):239-249. 161. Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB. Low-carbohydrate diets and all-cause and cause-specific mortality: Two cohort studies. Ann Intern Med. 2010;153(5):289-298. 162. Chen X, Wei G, Jalili T, et al. The Associations of Plant Protein Intake With All-Cause Mortality in CKD. Am J Kidney Dis. 2016;67(3):423-430. 163. Moe SM, Zidehsarai MP, Chambers MA, et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(2):257-264. 164. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-Analysis of the Effects of Soy Protein Intake on Serum Lipids. N Engl J Med. 1995;333(5):276-282. 165. Scialla JJ, Appel LJ, Astor BC, et al. Estimated net endogenous acid production and serum bicarbonate in African Americans with chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(7):1526-1532. 166. Fabbri ADT, Crosby GA. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int J Gastron Food Sci. 2016;3:2-11. 167. Kimura M, Itokawa Y. Cooking losses of minerals in foods and its nutritional significance. J Nutr Sci Vitaminol (Tokyo). 1990;36 Suppl 1:S25-32; discussion S33. 168. Jones WL. Demineralization of a wide variety of foods for the renal patient. J Ren Nutr. 2001;11(2):90-96. 169. Cupisti A, Comar F, Benini O, et al. Effect of boiling on dietary phosphate and nitrogen intake. J Ren Nutr. 2006;16(1):36-40. 170. Ando S, Sakuma M, Morimoto Y, Arai H. The Effect of Various Boiling Conditions on Reduction of Phosphorus and Protein in Meat. J Ren Nutr. 2015;25(6):504-509. 171. Wu HY, Fukuma S, Shimizu S, et al. Effects of Higher Quality of Care on Initiation of Long-term Dialysis in Patients With CKD and Diabetes. Am J Kidney Dis. 2017;70(5):666-674. 172. Daugirdas JT. Proposed controlled trials of phosphate reduction in CKD: which whey should we go? Kidney Int. 2010;77(10):929-930; author reply 930. 173. Locatelli F, Fouque D, Heimburger O, et al. Nutritional status in dialysis patients: a European consensus. Nephrol Dial Transplant. 2002;17(4):563-572. 174. Pollock JB, Jaffery JB. Knowledge of phosphorus compared with other nutrients in maintenance dialysis patients. J Ren Nutr. 2007;17(5):323-328. 175. Food Composition Database, 2016 (In Chinese). Food and Drug Administration, Ministry of Health and Welfare, Taiwan, Republic of China. Available at: https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178. Accessed Oct. 27, 2017. https://consumer.fda.gov.tw/foodanalysis/ingredients.htm. Accessed May 9, 2016. 176. Hill Gallant KM. Studying dietary phosphorus intake: the challenge of when a gram is not a gram. Am J Clin Nutr. 2015;102(2):237-238. 177. Sullivan CM, Leon JB, Sehgal AR. Phosphorus-containing food additives and the accuracy of nutrient databases: implications for renal patients. J Ren Nutr. 2007;17(5):350-354. 178. Zhang ZW, Shimbo S, Miyake K, et al. Estimates of mine | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72893 | - |
dc.description.abstract | 背景:末期腎臟病病人是心血管疾病的高危險族群,並都過早死亡。新證據表明,高磷血症、纖維母細胞生長因子23 (fibroblast growth factor 23, FGF23) 過量、繼發性副甲狀腺功能亢進和維生素D缺乏等在內的礦物質代謝異常,導致該族群的不良後果。膳食磷限制是改善礦物質與骨骼代謝異常的首選方法,但其對FGF23的影響未明。針對患有高磷血症之血液透析病人,目前的臨床指引建議以磷與蛋白質比率 (phosphate-to-protein ratio, PPR) 當作工具來慎選食物,食物的PPR值應為10-12 mg/g,以減少膳食磷、同時提供足夠蛋白質攝取量。營養成份資料庫中PPR的準確性,及每日適當膳食磷攝取量目前均未明。本論文的目的是 (1)探討我國營養成份資料庫估算PPR的準確性,(2)藉由系統性文獻回顧及統合分析評估飲食對FGF23降低效果,以及 (3)研究血液透析病人低磷飲食對FGF23的影響,及每日適當膳食磷攝取量。
方法:(1)將從醫院菜單中選取20種烹飪菜餚,探討營養成份資料庫估算PPR的準確性。(2)系統性搜索四個醫學資料庫(Medline,PubMed,Embase和Cochrane Library),收集文獻鎖定低磷飲食對FGF23降低作用的隨機臨床試驗,並執行隨機效應模型的統合分析。(3)在一項隨機交叉試驗中,招募患有末期腎臟病和高磷血症的病人,隨機分派為兩組,接受為期兩天的極低磷餐(PPR 8 mg/g,磷含量低於600毫克/天),或低磷餐(PPR 10 mg/g,磷含量低於800毫克/天)。主要探討結果為攝取兩種低磷餐之後intact FGF23值變化的差異。次要結果包括血磷值、副甲狀腺及C-terminal FGF23 值變化。 結果:(1)不同研究食物項目間營養素的差值,以營養成份資料庫估計值減掉測量值計算,明顯不同。與每100公克食物所含PPR的測量值相比,估計值會明顯高估(平均差異值 ± 標準差,3.5 ± 12.2 mg/g,P = 0.008). (2)系統性文獻回顧顯示過去有5篇隨機對照試驗探討慢性腎臟病患者,但都沒有納入透析患者。統合分析表示,相較於攝取磷含量較高的餐點,低磷餐的攝取傾向於降低FGF23值(標準化平均差異值 -0.74, 95% CI -1.54 to 0.07, P = 0.07). (3)共有35名受試者參加研究,29名完成試驗。與基準值比較,兩種低磷餐均能降低intact FGF23,血磷及副甲狀腺,卻未能改變C-terminal FGF23值。相較於低磷餐,極低磷餐對intact FGF23,副甲狀腺或C-terminal FGF23 值並沒有額外降低作用,但能額外降低血磷值 (平均差異值, 0.6 mg/dL; 95% CI, 0.2 to 1.0; P = 0.002). 結論: 在使用營養成份資料庫評估PPR以準備醫院飲食時應謹慎行事。限磷飲食可降低慢性腎臟病患者的FGF23值。對於血液透析患者,極低磷餐對FGF23值降低沒有額外的益處,但提供更大的降磷作用。 | zh_TW |
dc.description.abstract | Background: Patients with end-stage renal disease (ESRD) are at an increased risk for developing cardiovascular disease, and premature death. Emerging evidence suggests that disordered mineral metabolism including hyperphosphatemia, fibroblast growth factor 23 (FGF23) excess, secondary hyperparathyroidism, and vitamin D deficiency contribute to the high rates of adverse outcomes. Dietary phosphate restriction is a preferred way to ameliorate altered mineral metabolism, but yields conflicting results on FGF23. For hemodialysis patients who have hyperphosphatemia, current guidelines recommend the metric phosphate-to-protein ratio (PPR) to select foods with a PPR value of 10 – 12 mg/g, fulfilling low phosphorus purpose while ensuring adequate protein intake. The accuracy of PPR in nutrient database and the optimal amount of dietary phosphate restriction are undefined. The objectives of this dissertation are (1) to examine the accuracy of nutrient database estimating PPR, (2) to assess diet-mediated FGF23-lowering effect using a systematic review and meta-analysis, and (3) to investigate the effect of low-phosphate diet on FGF23, and assess the optimal amount of dietary phosphate restriction in hemodialysis patients.
Methods: (1) Accuracy of nutrient database regarding PPR in 20 cooked dishes selected from the hospital menu was determined. (2) Four database (Medline, PubMed, Embase, and Cochrane Library) were systematically searched for randomized clinical trials (RCTs) that examined FGF23-lowering effects of low-phosphate diets to conduct a random-effects meta-analysis. (3) In a randomized crossover trial, adults with ESRD and hyperphosphatemia were randomly assigned to receive a very-low-phosphate diet (PPR 8 mg/g, equivalent to phosphate content less than 600 mg/d), or a low-phosphate diet (PPR 10 mg/g, equivalent to phosphate content less than 800 mg/d) for two days. The primary outcome was mean difference in change-from-baseline intact FGF23 level between intervention groups. Secondary outcomes included changes in serum phosphate, intact parathyroid hormone (PTH), and C-terminal FGF23 level. Results: (1) There is a substantial variation in differences of nutrients (estimated values based on nutrient database – measured values) among study foods. Comparisons of estimated values with measured values for every 100 g of tested foods revealed a significant overestimation for the PPR (mean difference ± SD, 3.5 ± 12.2 mg/g, P = 0.008). (2) In the systematic review, five RCTs of patients with chronic kidney disease (CKD) were identified and no study enrolled dialysis patients. The meta-analysis revealed that lower phosphate diets tended to reduce FGF23 levels, compared with higher phosphate diets (standardized mean difference, -0.74; 95% CI, -1.54 to 0.07; P = 0.07). (3) A total of 35 patients consumed study diets and 29 completed the trial. Both low-phosphate diets significantly decreased intact FGF23, phosphate, and intact PTH levels relative to baseline values, but no change in C-terminal FGF23 level. Relative to the low-phosphate diet, the very-low-phosphate diet had no significant effect on the level of intact FGF23, intact PTH, or C-terminal FGF23 but lowered the serum phosphate level (mean difference, 0.6 mg/dL; 95% CI, 0.2 to 1.0; P = 0.002). Conclusions: Caution should be exercised in estimating the PPR using a nutrient database to prepare hospital diets. Dietary phosphate restriction may reduce FGF23 levels in CKD patients. For hemodialysis patients, the very-low-phosphate diet offered no additional benefit for FGF23 reduction but provided a greater phosphate-lowering effect. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:09:28Z (GMT). No. of bitstreams: 1 ntu-108-F04849017-1.pdf: 5142888 bytes, checksum: 541ef2e8d755ad9bc10d22566fd82a52 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV Contents VII List of Figures XIII List of Tables XIV List of Appendices for Related Publications XVI Chapter One: Introduction 1 1.1. The Burden of End-Stage Renal Disease 1 1.1.1. Cardiovascular Disease in End-Stage Renal Disease 2 1.1.2. Cardiovascular Risk Factors in End-Stage Renal Disease 2 1.2. Mineral Abnormalities in Patients with Renal Failure 3 1.2.1. Calcium 4 1.2.1.1. Altered Calcium Status and Clinical Outcomes 4 1.2.1.2. Clinical Management of Altered Calcium Status 5 1.2.2. Vitamin D 6 1.2.2.1. Causes of Vitamin D Deficiency in Renal Failure 7 1.2.2.2. Clinical Management of Vitamin D Deficiency 8 1.2.3. Parathyroid Hormone 10 1.2.3.1. Parathyroid Hormone in Chronic Kidney Disease 11 1.2.3.2. Parathyroid Hormone and Clinical Outcome 11 1.2.3.3. Management of Secondary Hyperparathyroidism 13 1.3. Phosphorus 14 1.3.1. The Role of Phosphorus in Secondary Hyperparathyroidism 14 1.3.1.1. Classical Theory 15 1.3.1.2. Modern Theory 16 1.3.2. Hyperphosphatemia in End-Stage Renal Disease 17 1.3.3. Hyperphosphatemia and Clinical Outcomes 18 1.3.4. Pathophysiologic Mechanisms 19 1.3.5. Management of Hyperphosphatemia 20 1.3.6. Phosphate Removal by Dialysis 20 1.3.6.1. Characteristics of Dialysis Phosphate Removal 21 1.3.6.2. Limited Dialysis Capacity in Phosphate Removal 21 1.3.7. Phosphate Binders use in End-Stage Renal Disease 22 1.3.7.1. Pros and Cons of Commonly Used Phosphate Binders 22 1.3.7.2. Limitations of Phosphate Binders 24 1.4. Nutritional Intervention against Phosphate Load 25 1.4.1. Dietary Phosphate Intake and Clinical Outcomes 26 1.4.2. The Rationale for Dietary Phosphate Restriction 26 1.4.3. Challenges in Implementing a Low-Phosphate Diet 27 1.4.4. Essential Characteristics for Low-Phosphate Diets 28 1.4.4.1. Sources and Bioavailability of Dietary Phosphorus 28 1.4.4.2. Phosphorus-Protein Dilemma 30 1.4.4.3. Phosphate-to-Protein Ratio (PPR) as a Useful Tool 31 1.4.4.4. Phosphorus from Processed Food 32 1.4.4.5. Plant-based Phosphorus 34 1.4.4.6. Reduction of Phosphorus in Food by Boiling 35 1.4.5. Nutritional Counseling 36 1.4.5.1. Contents of Nutritional Counseling 37 1.4.5.2. Shortage of Dietitians and Its Consequences 38 1.4.5.3. Lessons from Our Previous Study 39 1.4.5.4. Limitations of Food Composition Tables 41 1.5. Fibroblast Growth Factor 23 43 1.5.1. Structure and Characteristics of FGF23 43 1.5.2. Role of Klotho in the FGF23 Function 44 1.5.3. Regulation of FGF23 44 1.5.4. Differential FGF23 Response to Dietary Phosphate Loading 47 1.5.5. Physiologic Role of FGF23 in Phosphate Homeostasis 48 1.5.6. FGF23 Excess and Clinical Outcomes 49 1.5.7. FGF23 Excess as Potential Therapeutic Target 50 1.5.8. Time Required for Diet-induced Changes in FGF23 Level 50 1.6. Comparison of Mineral Parameters as Risk Factors 51 1.7. Knowledge Gap 52 1.7.1 Accuracy of Nutrient Database Regarding PPR 52 1.7.2 Effect of Dietary Phosphate Restriction on FGF23 53 1.7.3 The Optimal Amount of Dietary Phosphate Intake 54 Chapter Two: Objectives 55 2.1. Preparation of Low-Phosphate Diet and Accuracy of Taiwanese Nutrient Database Estimating Phosphate-to-Protein Ratio in Low-Phosphate Hospital Diets 55 2.2. Synthesize Current Available Evidence Regarding Effect of Low-Phosphate Diet on FGF23 Level 55 2.3.1. Effect of Low-Phosphate Diet on FGF23 Level in Dialysis Patients 56 2.3.2. Optimal Amount of Dietary Phosphate Restriction for Dialysis Patients 56 Chapter Three: Materials and Methods 58 3.1. Preparation of Low-Phosphate Diet and Examining Accuracy of Taiwanese Nutrient Database Estimating Phosphate-to-Protein Ratio 58 3.1.1. Characteristics of the Study Food Sources 58 3.1.2. Preparation of Study Foods 58 3.1.3. Improving the Palatability of the Boiled Meats 59 3.1.4. Estimation of Nutrient Content in Low-Phosphate Meals 60 3.1.5. Analysis and Measurement of Nutrients 60 3.1.6. Production of Low-Phosphate Meals with Meat Boiling 61 3.1.7. Statistical Analysis 62 3.2. FGF23-Lowering Effect of Low-Phosphate Diet in Patients with Chronic Kidney Disease Using a Systematic Review and Meta-Analysis Strategy 64 3.2.1. Data Sources and Literature Searches 64 3.2.2. Search Strategies 64 3.2.3. Study Selection 66 3.2.4. Data Extraction and Quality Assessment 66 3.2.5. Outcomes 67 3.2.6. Data Synthesis and Analysis 67 3.2.7. Estimations and Imputations for Missing Data 69 3.3. Evaluating the Effect of Low-Phosphate Diet on FGF23 and the Optimal Amount of Dietary Phosphate Intake in a Randomized Crossover Trial 71 3.3.1. Study Design 71 3.3.2. Approval by Institutional Review Board (IRB) 72 3.3.3. Online Registration of the Study 72 3.3.4. Study Population 72 3.3.5. Randomization 73 3.3.6. Masking 74 3.3.7. Characteristics of Study Diets 74 3.3.8. Preparation of Study Diets 75 3.3.9. Individualized Diets for Participants 76 3.3.10. Dietary Intervention 77 3.3.11. Delivery of Study Meals 77 3.3.12. Type of dietary interventions 78 3.3.13. Rationale for Selecting Dietary Phosphate Amount in Two Intervention Arms 78 3.3.14. Rationale for Duration of Dietary Interventions 80 3.3.15. Non-allowed Treatment during the Study 80 3.3.16. Enhance Compliance with Study Protocol 81 3.3.17. Dietary Assessment 82 3.3.18. Data Collection 83 3.3.19. Laboratory Measurements 84 3.3.20. Outcomes 85 3.3.21. Sample Size Estimation 86 3.3.22. Safety and Adverse Events 86 3.3.23. Funding 87 3.3.24. Statistical Analysis 87 Chapter Four. Results 90 4.1. Preparation of Low-Phosphate Diet and Examining Accuracy of Taiwanese Nutrient Database Estimating Phosphate-to-Protein Ratio 90 4.1.1. Characteristics of Study Food Items 90 4.1.2. Accuracy of the Nutrient Database for Mixed foods 90 4.1.3. Accuracy of the Nutrient Database for Plant-Based Dishes 92 4.1.4. Accuracy of the Nutrient Database for Meats 93 4.1.5. Effect of Boiling before Cooking on Changes in Nutrients in Meats 94 4.1.6. Production of Low-Phosphate Hospital Meals with the Boiling Method for Clinical Use 95 4.2. FGF23-Lowering Effect of Low-Phosphate Diet in Patients with Chronic Kidney Disease Using a Systematic Review and Meta-Analysis Strategy 96 4.2.1. Search Results 96 4.2.2. Study Characteristics and Quality Assessments 96 4.2.3. Effects of Lower versus Higher Phosphate Diet on FGF23 Levels 98 4.2.4. Subgroup Analyses 98 4.2.5. Sensitivity Analyses 99 4.2.6. Possible Adverse Effects of a Lower Phosphate Diet 100 4.3. Evaluating the Effect of Low-Phosphate Diet on FGF23 and the Optimal Amount of Dietary Phosphate Intake in a Randomized Crossover Trial 100 4.3.1. Study Flow Diagram 100 4.3.2. Baseline Characteristics 101 4.3.3. Comparisons of Outcomes between Two Study Diets 101 4.3.4. Comparison of Daily Dietary Intake between Two Study Diets 103 4.3.5. Assessment of Carry-Over Effects and Period Effects 104 4.3.6. Safety of the Low-Phosphate Diets 104 Chapter Five. Discussion 106 5.1. Preparation of Low-Phosphate Diet and Examining Accuracy of Taiwanese Nutrient Database Estimating Phosphate-to-Protein Ratio 106 5.1.1. Main Findings 106 5.1.2. Strengths 106 5.1.3. Relationship to Findings of Other Results 107 5.1.4. Implications 110 5.1.5. Limitations 112 5.2. FGF23-Lowering Effect of Low-Phosphate Diet in Patients with Chronic Kidney Disease Using a Systematic Review and Meta-Analysis Strategy 113 5.2.1. Main Findings 113 5.2.2. Strengths 113 5.2.3. Relationship to Findings of Other Results 114 5.2.4. Possible Biological Mechanisms and Implications 115 5.2.5. Limitations 116 5.3. Evaluating the Effect of Low-Phosphate Diet on FGF23 and the Optimal Amount of Dietary Phosphate Intake in a Randomized Crossover Trial 118 5.3.1. Main Findings 118 5.3.2. Strengths 119 5.3.3. Relationship to Findings of Other Studies and Reviews 120 5.3.4. Possible Biological Mechanisms 125 5.3.5. Clinical Implications 126 5.3.6. Limitations 127 5.4. Clinical Implications of This Dissertation 128 5.5. Conclusions 130 References 132 Figures 158 Tables 178 Appendix for Related Publications 205 | |
dc.language.iso | en | |
dc.title | 末期腎臟病病人高血磷之飲食對策 | zh_TW |
dc.title | Diet Strategy for Hyperphosphatemic Patients in End-Stage Renal Disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 吳泓彥(Hon-Yen Wu) | |
dc.contributor.oralexamcommittee | 張新儀(Hsing-Yi Chang),季瑋珠(Wei-Chu Chie),杜裕康(Yu-Kang Tu) | |
dc.subject.keyword | 磷蛋白比,飲食介入,FGF23,隨機試驗,統合分析,末期腎臟病, | zh_TW |
dc.subject.keyword | phosphate-to-protein ratio,dietary intervention,FGF23,randomized clinical trial,meta-analysis,end-stage renal disease, | en |
dc.relation.page | 247 | |
dc.identifier.doi | 10.6342/NTU201900868 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-23 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。