Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72888
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鏡堂
dc.contributor.authorHsin-Ting Linen
dc.contributor.author林歆庭zh_TW
dc.date.accessioned2021-06-17T07:09:18Z-
dc.date.available2024-07-29
dc.date.copyright2019-07-29
dc.date.issued2019
dc.date.submitted2019-07-23
dc.identifier.citationBergou, A. J., Xu, S., & Wang, Z. J. (2007). Passive wing pitch reversal in insect flight. Journal of Fluid Mechanics, Vol. 591, 321-337.
Birch, J. M., & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 412(6848), 729-733.
Bode-Oke, A. T., Zeyghami, S., & Dong, H. (2017). Aerodynamics and flow features of a damselfly in takeoff flight. Bioinspiration & Biomimetics, 12(5), 056006.
Dickinson, M. H., & Gotz, K. G. (1993). Unsteady aerodynamic performance of model wings at low Reynolds numbers. Journal of Experimental Biology, 174(1), 45-64.
Dickinson, M. H., Lehmann, F.-O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954-1960.
Dileo, C., & Deng, X. (2012). Design of and experiments on a dragonfly-inspired Robot. Advanced Robotics, 23(7-8), 1003-1021.
Ellington, C. P. (1984). The aerodynamics of insect flight. I. The quasi-steady analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci, 305, 1-15.
Ellington, C. P., Van Den Berg, C., Willmott, A. P., & Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384(6610), 626-630.
Gutierrez, E., Quinn, D. B., Chin, D. D., & Lentink, D. (2016). Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics. Bioinspiration & Biomimetics, 12(1), 016004.
Han, J.-S., Chang, J.-W., & Kim, S.-T. (2014). Reynolds number dependency of an insect-based flapping wing. Bioinspiration & Biomimetics, 9(4), 046012.
Hankin, E. (1921). The soaring flight of dragonflies. Proc. Cambridge Phil. Soc. 20:460-65.
Hu, Z., & Deng, X.-Y. (2015). Aerodynamic interaction between forewing and hindwing of a hovering dragonfly. Acta Mechanica Sinica, 30(6), 787-799.
Hu, Z., & Deng, X. (2009). Aerodynamic effect of forewing-hindwing interactions in hovering and forward flight of dragonfly. Proceeding of the Annual Meeting of the Society for Integrative and Comparative Biology, 49, E79.
Kramer, V. M. (1932). Die zunahme des maximalauftriebes von tragflugeln bei plotzlicher anstellwinkelvergrosserung (boeneffekt). Z. Flugtech. Motorluftschiff, 23, 185-189.
Li, C., & Dong, H. (2017). Wing kinematics measurement and aerodynamics of a dragonfly in turning flight. Bioinspiration & Biomimetics, 12(2), 026001.
Liu, H., Ellington, C. P., Kawachi, K., Van Den Berg, C., & Willmott, A. P. (1998). A computational fluid dynamic study of hawkmoth hovering. Journal of Experimental Biology, 201(4), 461-477.
Liu, L., & Sun, M. (2018). The added mass forces in insect flapping wings. J Theor Biol, 437, 45-50.
May, M. (1995). Dependence of flight behavior and heat production on air temperature in the green darner dragonfly Anax junius (Odonata: Aeshnidae). Journal of Experimental Biology, 198(11), 2385-2392.
Maybury, W. J., & Lehmann, F. O. (2004). The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Journal of Experimental Biology, 207(26), 4707-4726.
Naidu, V., Young, J., & Lai, J. (2014). Effect of wing flexibility on dragonfly hover flight. Paper presented at the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia (December, 2014).
Newman, B. (1977). Model test on a wing section of a dragonfly. In Scale Effects in Animal Locomotion. (ed. T.J. Pedley), pp. 445-477. London: Academic Press.
Park, H., & Choi, H. (2012). Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Bioinspiration & Biomimetics, 7(1), 016008.
Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology, 206(23), 4191-4208.
Sane, S. P., & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology, 205(8), 1087-1096.
Sasaki, K., & Kiya, M. (1991). Three-dimensional vortex structure in a leading-edge separation bubble at moderate Reynolds numbers. Journal of Fluids Engineering, 113(3), 405-410.
Sato, M., & Azuma, A. (1997). The flight performance of a damselfly Ceriagrion melanurum Selys. Journal of Experimental Biology, 200(12), 1765-1779.
Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2007). Aerodynamics of Low Reynolds number Flyers, Cambridge University Press, New York.
Srygley, R., & Thomas, A. (2002). Unconventional lift-generating mechanisms in free-flying butterflies. Nature, 420(6916), 660.
Sudhakar, Y., & Vengadesan, S. (2010). Flight force production by flapping insect wings in inclined stroke plane kinematics. Computers & Fluids, 39(4), 683-695.
Sun, M., & Tang, J. (2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Journal of Experimental Biology, 205(1), 55-70.
Wagner, H. (1925). Über die Entstehung des dynamischen Auftriebes von Tragflügeln. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 5(1), 17-35.
Wakeling, J., & Ellington, C. (1997a). Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces. Journal of Experimental Biology, 200(3), 543-556.
Wakeling, J., & Ellington, C. (1997b). Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight. Journal of Experimental Biology, 200(3), 557-582.
Walker, P. (1931). Experiments on the growth of circulation about a wing and an apparatus for measuring fluid motion. Rep. Memo. Aeronaut. Res.(Great Britain), 1402.
Wang, H., Zeng, L., Liu, H., & Yin, C. (2003). Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. Journal of Experimental Biology, 206(4), 745-757.
Wang, J. K., & Sun, M. (2005). A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. Journal of Experimental Biology, 208(19), 3785-3804.
Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology, 59(1), 169-230.
Xie, C.-M., & Huang, W.-X. (2015). Vortex interactions between forewing and hindwing of dragonfly in hovering flight. Theoretical and Applied Mechanics Letters, 5(1), 24-29.
Zhang, J., & Lu, X. Y. (2009). Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight. Phys Rev E Stat Nonlin Soft Matter Phys, 80(1 Pt 2), 017302.
梁家銘 (2018) 豆娘不對稱拍翅動作與飛行操控研究. 臺灣大學機械工程學系碩士論文.
鄒佩沂 (2018) 翅膀相位差對豆娘與蜻蜓懸停策略之影響. 臺灣大學工程科學及海洋工程學系碩士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72888-
dc.description.abstract本文研究豆娘(白痣珈蟌)的翅膀旋轉時機與旋轉時間對於飛行表現之影響,利用兩台高速攝影機正交攝影技術捕捉豆娘在自由飛行下的動態,並且分析不同旋轉時機以及旋轉時間的效應。首先分析並歸納豆娘的拍翅動作模式,並找出翅膀運動中的五個重要角度:拍撲角、偏離角、旋轉角、傾斜角以及方位角,發現在白痣珈蟌的飛行動作中,有延遲旋轉以及對稱旋轉的差別,旋轉時間從0.17 ~ 0.28個週期不等。在拍翅軌跡上白痣珈蟌前翅採取八字型,後翅則採取O字型方式。而在前後翅相位差的部分約為0.10 ~ 0.15 個週期。
在不同旋轉時機固定來流模擬結果發現領先旋轉產生的垂直力大於對稱旋轉以及延遲旋轉,差異主要是在下拍的時候,由於領先旋轉在下拍初始階段的攻角即為正攻角,因此LEV也較早開始發展;而延遲旋轉則是造成負攻角的現象,使得LEV發展較小。在下拍末期,前翅因為領先旋轉模式先進行翅膀旋轉造成較高攻角的拍撲動作。在自由飛行中,領先旋轉模式所產生的空氣負功相較於對稱旋轉以及延遲旋轉大了64%以及55%,雖然採用領先旋轉的飛行可以飛得較高,但是必須耗費更多的能量來克服空氣產生的負功。
在不同旋轉時間的固定來流模擬中,在垂直力的部分,旋轉時間為0.20、0.25、0.30、0.40以及0.50按照趨勢大致上可以分成三組。在下拍階段,旋轉時間為0.25與0.50相對於旋轉時間為0.30的前翅與來流速度所夾的有效攻角較大,因此在下拍時會產生較大的LEV,但是因為旋轉時間為0.25週期會進行快速的翅膀旋轉,使其在下拍初期垂直力不會相差太多。在自由飛行中,旋轉時間為0.30所需克服的空氣負功較小,因此在低耗能為優點的飛行器上佔有較大的優勢;若是不同飛行模式的需求下,旋轉時間0.30適用於需要較快的水平飛行速度,旋轉時間0.25在適用於需要較高的爬升率,因為在差不多的爬升率中,其所需克服的負功最少。
zh_TW
dc.description.abstractIn the present study, we investigated how the timing and duration of wing rotation affect the flight performance of damselflies (Matrona cyanoptera). The wing motions of damselflies were recorded with two high-speed camera, and then CFD models were built to analyze flow field. In the motion analysis, we measured the flapping angle, the deviation angle, the rotation angle, the inclined angle and the azimuth angle. The results showed that there were symmetric and delayed rotation in damselflies’ flight and the duration of wing rotation was 0.17 ~ 0.28 period. Moreover, we found that the phase difference between forewings and hindwings were 0.10 ~ 0.15 period.
In the constant freestream simulation of the different timing of wing rotation, the results indicate that the vertical force with advanced rotation is larger than that with symmetric and delayed rotation due to the different angle of attack in the downstroke. At the beginning of downstroke, the leading edge vortex (LEV) develops earlier with advanced rotation because of the positive angle of attack. On the other hand, the LEV is delayed with delayed rotation contrary to the case with advanced and symmetric rotation. At the end of downstroke, the angle of attack is higher with advanced rotation than that with symmetric and delayed rotation. In the free flight simulation of different timing of wing rotation, the negative work done by air with advanced rotation is 64% and 55% larger than that with symmetric and delayed rotation respectively. Although damselflies can fly higher with advanced rotation, they have to consume more power to counteract the negative work done by air.
In the constant freestream simulation of the different duration of wing rotation, the vertical force with duration time of 0.25 and 0.50 are greater than that of 0.30, because the effective angle of attack with the duration of 0.25 and 0.50 is larger. In the free flight simulation, the cases that the duration is 0.20, 0.25, 0.40 and 0.50 are similar in the trajectory, and the climbing rate of these cases are higher than duration time of 0.30. In addition, the advantage of the duration of 0.25 is that it deal with less negative work, and the advantage of the duration of 0.30 is to apply to the MAVs (micro aerial vehicles) with low energy consumption and fast horizontal velocity.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:09:18Z (GMT). No. of bitstreams: 1
ntu-108-R06522317-1.pdf: 6898563 bytes, checksum: 81199f7e58e237ebf431f171a076a679 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
符號說明 V
目錄 VII
圖表目錄 X
第一章 前言 1
第二章 文獻回顧 3
2-1 專有名詞介紹 4
2-2 定翼飛行力學 5
2-2.1 攻角與有效攻角 5
2-2.2 飛行之空氣作用力 6
2-2.3 渦度與環流量 6
2-2.4 Kutta-Joukowski 定理與 Kutta condition 7
2-2.5 Wagner effect 8
2-3 拍撲翼飛行力學 8
2-3.1 翼前緣渦漩 9
2-3.2 翼尖渦漩 11
2-3.3 準穩態模型 11
2-3.4 翅膀旋轉 12
2-3.5 尾流捕獲 14
2-3.6 附加質量 15
2-3.7 翅膀交互作用 15
2-4 相關文獻 17
2-4.1 蜻蜓豆娘文獻 17
2-4.2 飛行模式之相位差與前後翅交互作用 18
2-4.3 翅膀旋轉 23
2-5微飛行器 28
第三章 研究方法 30
3-1 動態拍攝與分析 31
3-1.1 研究物種 31
3-1.2 樣本捕捉 32
3-1.3 實驗設備與架設 33
3-1.4 翅膀動作分析 36
3-2 因次分析 37
3-3 數值模擬 40
3-3.1 軟體介紹 40
3-3.2 統御方程式與邊界條件 40
3-3.3 使用者自定義函數與求解器設定 41
3-3.4 網格與動網格 43
3-3.5 物理模型 45
3-3.6 翅膀動態 46
3-4 數值模擬驗證 49
第四章 結果與討論 50
4-1 實驗動態分析 50
4-1.1拍翅動作分析 50
4-1.2 旋轉相位與旋轉時間之觀察 55
4-2 數值模擬 58
4-2.1 旋轉時機 60
4-2.2 旋轉時間 67
第五章 結論與未來展望 74
5-1 結論 74
5-2 未來展望 75
5-3 Gantt Chart 77
第六章 參考文獻 78
dc.language.isozh-TW
dc.subject旋轉時機zh_TW
dc.subject旋轉時間zh_TW
dc.subject翅膀旋轉zh_TW
dc.subject攻角zh_TW
dc.subject豆娘zh_TW
dc.subjectdamselfliesen
dc.subjectangle of attacken
dc.subjectwing rotationen
dc.subjecttiming of rotationen
dc.subjectduration of rotationen
dc.title旋轉時機與旋轉時間對於豆娘飛行表現之影響zh_TW
dc.titleEffect of Timing and Duration of Wing Rotation on Flight Performance of Damselflies (Matrona cyanoptera)en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊瑞珍,江茂雄,廖英志,葉思沂
dc.subject.keyword豆娘,攻角,翅膀旋轉,旋轉時機,旋轉時間,zh_TW
dc.subject.keyworddamselflies,angle of attack,wing rotation,timing of rotation,duration of rotation,en
dc.relation.page81
dc.identifier.doi10.6342/NTU201901784
dc.rights.note有償授權
dc.date.accepted2019-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved