Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72887
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃漢邦(Han-Pang Huang)
dc.contributor.authorHong-Yi Liuen
dc.contributor.author劉宏毅zh_TW
dc.date.accessioned2021-06-17T07:09:16Z-
dc.date.available2021-08-05
dc.date.copyright2019-08-05
dc.date.issued2019
dc.date.submitted2019-07-22
dc.identifier.citation[1] J. D. Barnfather, M. J. Goodfellow, and T. Abram, “A performance evaluation methodology for robotic machine tools used in large volume manufacturing,” Robotics and Computer-Integrated Manufacturing, Vol. 37, pp. 49-56, 2016.
[2] M. E. H. Benbouzid, 'A Review of Induction Motors Signature Analysis as a Medium for Faults Detection,' IEEE Transactions on Industrial Electronics, Vol. 47, No. 5, pp. 984-993, 2000.
[3] T. Borgi, A. Hidri, B. Neef, ”Data analytics for predictive maintenance of industrial robots,” International Conf. on Advanced Systems and Electric Technologies, Hammamet, Tunisia, Vol. 2, pp. 412-417, 2017.
[4] R. Bostelman, R. Eastman, T. Hong, “Comparison of Registration Methods for Mobile Manipulators,” Proceedings of the 19th International Conference on CLAWAR 2016, London, Vol. 7, pp. 205-213, 2016.
[5] R. Bostelman, T. Hong, and J. Marvel, “Survey of Research for Performance Measurement of Mobile Manipulators,” Journal of Research of the National Institute of Standards and Technology, Vol 121, No. 3, pp. 342-366, June, 2016.
[6] F. Caccavale, P. Chiacchio, and I. D. Walker, 'A Time-Delayed Observer for Fault Detection and Isolation in Industrial Robots,' Robotica, Vol. 24, No. 5, pp. 557-565, 2006.
[7] F. Camci, and R. B. Chinnam, “Health-State Estimation and Prognostics in Machining Processes,” IEEE Transactions on Automation Science and Engineering, Vol. 7, No. 3, pp. 581-597, January, 2010.
[8] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems, New York: Springer Science & Business Media, 2012.
[9] P. D. Christofides, R. Scattolini, D. M. de la Pena, “Distributed model predictive control: A tutorial review and future research directions,” Computers and Chemical Engineering, Vol. 51, No.5, pp. 21-41, April, 2013.
[10] A. Cubillo, S. Perinpanayagam, and M. Esperon-Miguez, “A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery,” Advances in Mechanical Engineering, Vol. 8, No. 8, August, 2016.
[11] D. Dandash, J.F. Brethé, E. Vasselin, “Micrometre Scale Performances of Industrial Robot Manipulators,” International Journal of Advanced Robotic Systems, Vol. 9, No. 4, pp. 159, May, 2012.
[12] H. M. Elattar, H. K. Elminir, and A. M. Riad, “Prognostics: a literature review,” Complex & Intelligent Systems, Vol. 2, No. 2, pp. 125-154, June, 2016.
[13] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, Vol. 27, No. 8, pp. 861-874, June, 2006.
[14] S. Hochreiter, and r. Schmidhuber, “Long short-term memory” Neural Comput., Vol. 9, No. 8, pp. 1735-1780, 1997.
[15] A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and prognostics implementing condition-based maintenance,” Mechanical Systems and Signal Processing, Vol. 20, No. 7, pp. 1483-1510, May, 2006.
[16] W. Jin, “Modeling of Machine Life Using Accelerated Prognostics and Health Management (APHM) and Enhanced Deep Learning Methodology,” Doctoral Dissertation, Department of Mechanical Engineering, University of Cincinnati, 2016.
[17] S. Khan, and T. Yairi, “A review on the application of deep learning in system health management,” Mechanical Systems and Signal Processing, Vol. 107, pp. 241-265, July, 2018.
[18] J. Lee, F. Wu, W. Zhao, “Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications,” Mechanical Systems and Signal Processing, Vol. 42, No. 1, pp. 314-334, January, 2014.
[19] Y. Lei, N. Li, L. Guo, “Machinery health prognostics: A systematic review from data acquisition to RUL prediction,” Mechanical Systems and Signal Processing, Vol. 104, pp. 799-834, May, 2018.
[20] C. H. Kuo, and H. P. Huang, “Failure modeling and process monitoring for flexible manufacturing systems using colored timed Petri nets,” IEEE Transactions on Robotics and Automation, Vol. 16, No. 3, pp. 301-312, June, 2000.
[21] Liang Lu, Xingxing Zhang, and Steve Renals, “On training the recurrent neural network encoder-decoder for large vocabulary end-to-end speech recognition,” 2016 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) IEEE, Shanghai, China,Vol. 20, pp. 5060–5064, March, 2016.
[22] P. Malhotra, L. Vig, G. Shroff, “Long Short Term Memory Networks for Anomaly Detection in Time Series,” SANN 2015 proceedings 23rd Conference European Symposium on Artificial Neural Networks, Vol. 1, pp.22-24, April, 2015.
[23] A. Mousavi, A. Akbarzadeh, M. Shariatee, “Repeatability analysis of a SCARA robot with planetary gearbox,” 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, Vol. 4, pp. 640-644, January, 2016.
[24] J. E. Muelaner, Z. Wang, and P. G. Maropoulos, “Concepts for and analysis of a high accuracy and high capacity (HAHC) aerospace robot,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 225, No. 8, pp. 1393-1399, August, 2011.
[25] M. C. A. Olde Keizer, S. D. P. Flapper, and R. H. Teunter, “Condition-based maintenance policies for systems with multiple dependent components: A review,” European Journal of Operational Research, Vol. 261, No. 2, pp. 405-420, September 2017.
[26] M. D. Pandey, and X. Zhang, “System reliability analysis of the robotic manipulator with random joint clearances,” Mechanism and Machine Theory, Vol. 58, No. 15, pp. 137-152, December, 2012.
[27] Y. Peng, M. Dong, and M. J. Zuo, “Current status of machine prognostics in condition-based maintenance: a review,” The International Journal of Advanced Manufacturing Technology, Vol. 50, No. 1, pp. 297-313, Septemeber, 2010.
[28] G. Qiao, and B. A. Weiss, “Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics,” International journal of prognostics and health management, Vol. 7, No.3, pp. 013, January, 2016.
[29] G. Qiao and B. A. Weiss, “Accuracy degradation analysis for industrial robot systems” Proceedings of 2017 ASME International Manufacturing Science and Engineering Conference, South Carolina, USA, Vol. 7, pp.21-29 June, 2017.
[30] V. S, M. Orkisz, M. Norrlof, “Data-driven gearbox failure detection in industrial robots,” IEEE Transactions on Industrial Informatics, Vol. 1, No.1, pp. 1-1, April 2019.
[31] A. Saxena, J. Celaya, B. Saha, “Metrics for Offline Evaluation of Prognostic Performance,” International Journal of Prognostics and Health Management, Vol. 1, No. 1, pp. 2153-2648, January, 2010.
[32] X.-S. Si, W. Wang, C.-H. Hu, “Remaining useful life estimation – A review on the statistical data driven approaches,” European Journal of Operational Research, Vol. 213, No. 1, pp. 1-14, 2011.
[33] S. Shanbr, F. Elasha, M. Elforjan, “Detection of natural crack in wind turbine gearbox,” Renewable Energy, Vol. 118, pp. 172-179, April, 2018.
[34] J. Z. Sikorska, M. Hodkiewicz, and L. Ma, “Prognostic modelling options for remaining useful life estimation by industry,” Mechanical Systems and Signal Processing, Vol. 25, No. 5, pp. 1803-1836, July, 2011.
[35] M. Slamani, A. Nubiola, and I. Bonev, “Assessment of the positioning performance of an industrial robot,” Industrial Robot: An International Journal, Vol. 39, No. 1, pp. 57-68, January, 2012.
[36] Y-K. Tasi, “Uncertainty Estimation and Performance Optimization for Vertical Articulated and Parallel Robot Manipulators,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2017.
[37] V. T. Tran, H. Thom Pham, B.-S. Yang, “Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine,” Mechanical Systems and Signal Processing, Vol. 32, pp. 320-330, 2012.
[38] C-H. Tseng, “Development of An Intelligent Robot Health Diagnosis System,” Master Thesis, Departemnt of Mechanical Engineering, National Taiwan University, Taipei City, 2016.
[39] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long Short-Term Memory Network for Remaining Useful Life estimation,” Proceedings of the IEEE ICPHM Conference, Dallas Texas, USA,Vol. 22, pp. 88-95, 2017
[40] “Deep Learning and Its Applications to Machine Health Monitoring: A Survey, ” Machine Learning, 2016. ArXiv. 2016. < https://arxiv.org/abs/1612.07640>.
[41] “Deep Learning for Anomaly Detection: A Survey,” Machine Learning. ArXiv. 2019. < https://arxiv.org/abs/1901.03407>.
[42] “LSTM-based encoder-decoder for multi-sensor anomaly detection,” Machine Learning. ArXiv. 2016. < https://arxiv.org/abs/1607.00148 >.
[43] “Multi-sensor prognostics using an unsupervised health index based on lstm encoder-decoder,” Machine Learning. ArXiv. 2016. <https://arxiv.org/abs/1608.06154>.
[44] “Predicting Remaining Useful Life using Time Series Embeddings based on Recurrent Neural Networks,” Machine Learning. ArXiv. 2017. < https://arxiv.org/abs/1709.01073>.
[45] “ISO 13381-1:2015 Condition monitoring and diagnostics of machines -- Prognostics -- Part 1: General guidelines,” Prognostics, 2018. ISO. 2018. <https://www.iso.org/standard/51436.html>.
[46] “ISO 9283:1998 Manipulating industrial robots -- Performance criteria and related test methods,” Industrial robots. 2018. ISO. 2018. <https://www.iso.org/standard/22244.html>.
[47] “SCARA Robot RS406 User Manual (E),” HIWIN Technology Corporation. 2017. <https://www.hiwin.tw/download/tech_doc/mar/SCARA_Robot_RS406_User_Manual-(E).pdf>.
[48] “Qcc: An R package for quality control charting and statistical process control,” Rnews.2003.<https://www.researchgate.net/publication/247303593_Qcc_An_R_package_for_quality_control_charting_and_statistical_process_control>.
[49] “Derivation of the F-Measure,” Derivation of the F-Measure. 2004. <http://qwone.com/~jason/writing/fmeasure.pdf>.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72887-
dc.description.abstract在機械手臂嚴重損壞前,事先發覺嚴重錯誤並診斷其錯誤並適時修正改善之,對機械手臂運作壽命而言非常重要。並藉由ISO 9283:1998法規所規定內容分析機械手臂。
為了精確地檢測製程變化和機器人健康指標,本論文透過四軸與六軸機械手臂感測器數值包含各角度、速度與力矩。本論文依ISO 9283:1998所定義指標作為主要實驗指定任務。主要取自其二項評估指標來計算:位姿準確度(Accuracy pose)。其中位姿準確度性可作為長短期記憶模型之重要特徵值,能評估此機械手臂性能藉此訂定與估測健康指數。
藉著ISO 9283:1998 指定的運作方形軌跡下,並以統計製程管制圖(Hotelling T^2 chart)方法監測機械手臂上感測器數據。而後,透過主成分析把機械手臂訊號降低維度並將位姿準確度(Accuracy pose)當作長短期記憶之自編碼模型的重要特徵來訓練模型。隨後,根據多元高斯分布計算機器手臂的異常分數。在根據操作者特性曲線下面積方法等評價模型好壞。最後,並根據異常分數值得出機械手臂健康指標曲線。最後,呈現診斷實驗,探究實驗驗證模型結果。
zh_TW
dc.description.abstractObtaining the diagnostic strategy before the catastrophic breakdown is prominent to the industrial robotic arm. It is critical for the robot arm to fix the problem by launching the maintenance strategy at right the time. Testing the performance characteristics of manipulating industrial robots in accordance with ISO 9283.
In this thesis, the main results of the experimental work performed on the industrial robotic arm for effective analysis, which includes the position, the torque, and speed from the robotic encoder sensor feedback. Based on the ISO 9283:1998, the calculation of accuracy pose (AP) is the main performance metrics for robot arm.
Analyzing the motion of the robot arm under the specific test geometry and the monitor by Hotelling T^2 conrol chart. Then, we modify motion signal by PCA and the AP as prominent feature for the long short term memory neural network based autoencoder scheme. Based on the Gaussian distribution, deliver the anomaly scores for the motion signal subsequently. The model performance metrics is reported by area under the receiver operating characteristics (ROC) curve. Lastly, the robotic health indicator curve is drawn based on the anomaly scores and experimental results are presented and discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:09:16Z (GMT). No. of bitstreams: 1
ntu-108-R05546043-1.pdf: 6957693 bytes, checksum: 458962563119064168eba9adf3c144ef (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 iii
摘要 v
Abstract vii
List of Tables viii
List of Figures ix
Nomenclature xiii
Chapter 1 Introduction 1
1.1 Motivation and Challenges 1
1.2 Contributions 2
1.3 Thesis Organization 3
Chapter 2 Background and Related Work 5
2.1 Introduction 5
2.2 Literature Review 6
2.2.1 ISO 9283 with a Robotic Arm 6
2.2.2 Diagnosis: Anomaly Detection Model 10
2.2.3 Metrics for Offline Evaluation 20
2.3 Problem Formulation 24
Chapter 3 System Architecture and System Flow 25
3.1 Diagnostic System Architecture 26
3.2 System State Recording 28
3.2.1 Condition-based Monitoring 28
3.2.2 Anomaly Detection 33
3.3 Anomaly Diagnosis 39
3.3.1 Long Short Term Memory neural network (LSTM) 39
3.3.2 Robotic Arm Anomaly Scores 46
3.3.3 Performance Assessment 48
3.4 Summary 52
Chapter 4 Simulations and Experiments 53
4.1 Hardware Platform 53
4.1.1 Specification of Industrial Robot Manipulators 53
4.1.2 Setup 58
4.2 Implementation and Results 60
4.2.1 Hotelling T^2 Control Chart Monitoring 60
4.2.2 LSTM-based Encoder-Decoder Model Training 68
Chapter 5 Conclusions and Future Works 85
5.1 Conclusions 85
5.2 Future Works 86
References 87
Appendix 91
dc.language.isoen
dc.title機械手臂錯誤偵測與診斷zh_TW
dc.titleAnomaly Detection and Diagnosis of the Industrial Robot Manipulatorsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee藍俊宏(Jakey BLUE),黃奎隆(Kwei-Long Huang),楊烽正(Feng-Cheng Yang)
dc.subject.keyword異常檢測與診斷,Hotelling’s控制圖,ISO 9283:1998 norm,工業機械手臂健康指數,長短期記憶模型,zh_TW
dc.subject.keywordAnomaly detection,Industrial Robotic Arm,Robot health index,Hotelling’s control chart,Long short term memory,ISO 9283:1998 norm,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201901647
dc.rights.note有償授權
dc.date.accepted2019-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
6.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved