Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72879
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃永芬
dc.contributor.authorChing-Ting Huangen
dc.contributor.author黃敬廷zh_TW
dc.date.accessioned2021-06-17T07:09:00Z-
dc.date.available2024-07-26
dc.date.copyright2019-07-26
dc.date.issued2019
dc.date.submitted2019-07-23
dc.identifier.citationAltschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 25:3389-3402
Arsenault J, Poulcur S, Messier C, Guay RJH (1995) WinRHlZO™, a root-measuring system with a unique overlap correction method. HortScience 30:906-906
Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, Le Gouis J, Griffiths S, Bennett MJ, King J, Wells DM (2015) Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot 66:2283-2292
Bekele WA, Wight CP, Chao S, Howarth CJ, Tinker NA (2018) Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol J 16:1452-1463
Burton AL, Brown KM, Lynch JP (2013) Phenotypic diversity of root anatomical and architectural traits in species. Crop Science 53:1042-1055
Butt MS, Tahir-Nadeem M, Khan MKI, Shabir R, Butt MS (2008) Oat: unique among the cereals. J European Journal of Nutrition 47:68-79
Campbell MT, Du Q, Liu K, Brien CJ, Berger B, Zhang C, Walia H (2017) A comprehensive image-based phenomic analysis reveals the complex genetic architecture of shoot growth dynamics in rice (Oryza sativa) 10
Carr PM, Martin GB, Caton JS, Poland WW (1998) Forage and nitrogen yield of barley—pea and oat—pea intercrops. Agron. J. 90:79-84
Chaffin AS, Huang YF, Smith S, Bekele WA, Babiker E, Gnanesh BN, Foresman BJ, Blanchard SG, Jay JJ, Reid RW, Wight CP, Chao S, Oliver R, Islamovic E, Kolb FL, McCartney C, Mitchell Fetch JW, Beattie AD, Bjornstad A, Bonman JM, Langdon T, Howarth CJ, Brouwer CR, Jellen EN, Klos KE, Poland JA, Hsieh TF, Brown R, Jackson E, Schlueter JA, Tinker NA (2016) A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genome 9
Chapko LB, Brinkman MA, Albrecht KA (1991) Oat, oat-pea, barley, and barley-pea for forage yield, forage quality, and alfalfa establishment. Journal of Production Agriculture 4:486-491
Clark RT, Famoso AN, Zhao K, Shaff JE, Craft EJ, Bustamante CD, McCouch SR, Aneshansley DJ, Kochian LV (2013) High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ 36:454-466
Coleman RK, Gill GS, Rebetzke GJ (2001) Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.) Aust J Agric Res 52:1235-1246
Contreras-Govea FE, Albrecht KA (2006) Forage production and nutritive value of oat in autumn and early summer. Crop science 46:2382-2386
Esvelt Klos K, Huang YF, Bekele WA, Obert DE, Babiker E, Beattie AD, Bjornstad A, Bonman JM, Carson ML, Chao S, Gnanesh BN, Griffiths I, Harrison SA, Howarth CJ, Hu G, Ibrahim A, Islamovic E, Jackson EW, Jannink JL, Kolb FL, McMullen MS, Mitchell Fetch J, Murphy JP, Ohm HW, Rines HW, Rossnagel BG, Schlueter JA, Sorrells ME, Wight CP, Yan W, Tinker NA (2016) Population genomics related to adaptation in elite oat germplasm. Plant Genome 9
Finch-Savage WE, Bassel GW (2015) Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany 67:567-591
Grando S, Ceccarelli S (1995) Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley. Euphytica 86:73-80
Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements and enhances circular visualization in R. Bioinformatics 30:2811-2812
Jehangir IA, Khan H, Khan M, Ur-Rasool F, Bhat R, Mubarak T, Bhat M, Rasool S (2013) Effect of sowing dates, fertility levels and cutting managements on growth, yield and quality of oats (Avena sativa L.). African Journal of Agricultural Research 8:648-651
Kamoshita A, Zhang J, Siopongco J, Sarkarung S, Nguyen H, Wade L (2002) Effects of phenotyping environment on identification of quantitative trait loci for rice root morphology under anaerobic conditions. Crop science 42:255-265
Lee C, Teng Q, Huang W, Zhong R, Ye Z-H (2010) The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone. Plant Physiol 153:526-541
Lee C, Teng Q, Zhong R, Yuan Y, Ye Z-H (2014) Functional roles of rice glycosyltransferase family GT43 in xylan biosynthesis. Plant Signal Behav 9:e27809-e27809
Liang S, Chu M, Shiau J (2016) Analysis of forage yields of pangolagrass mixed culture with gramineae-legume forage in northern region of Taiwan in winter season. Taiwan Livestock Res. 49(4):285-289
Liang S, Yeh Y, Wang S, Shiau J, Hsu J, Woo R (2017) Economic benefit evaluation of activating fallow farmland to plant oats as winter season crop in Taiwan. Taiwan Livestock Res. 51(3):217-223
Li G, Bai G, Carver BF, Elliott NC, Bennett RS, Wu Y, Hunger R, Bonman JM, Xu X (2017) Genome-wide association study reveals genetic architecture of coleoptile length in wheat. Theor Appl Genet 130:391-401
Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLOS Genetics 12:e1005767
Liu M, Tseng M (1984) Study on year-round culture of oat cultivar – N.T.U. Sel. No. 1. Taiwan Livestock Res. 17(1):11-23
Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system Architecture 157:29-39
López-Castañeda C, Richards RA (1994) Variation in temperate cereals in rainfed environments III. Water use and water-use efficiency. Field Crops Research 39:85-98
Lu L (2012) Outcomes of promoting domestic contractual forage production. Agriculture policy and review 238:56-58 (In Chinese)
Lu L (2013) Achievement of promoting domestic forage as substitutes for imported hay. Agriculture policy and review 257:44-47 (In Chinese)
Lu Q, Zhang M, Niu X, Wang C, Xu Q, Feng Y, Wang S, Yuan X, Yu H, Wang Y, Wei X (2016) Uncovering novel loci for mesocotyl elongation and shoot length in indica rice through genome-wide association mapping. Planta 243:645-657
Lu Y (2018) Assembly and transfer of iron-sulfur clusters in the plastid. Frontiers in plant science 9:336-336
MacMillan K, Emrich K, Piepho H-P, Mullins CE, Price AH (2006) Assessing the importance of genotype × environment interaction for root traits in rice using a mapping population II: conventional QTL analysis. Theor Appl Genet 113:953-964
Mahender A, Anandan A, Pradhan SK (2015) Early seedling vigour, an imperative trait for direct-seeded rice: an overview on physio-morphological parameters and molecular markers. Planta 241:1027-1050
Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lubberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics 16:47
R Core Team (2018) R Foundation for Statistical Computing; Vienna, Austria: 2014:2013
Rebetzke GJ, Verbyla AP, Verbyla KL, Morell MK, Cavanagh CR (2014) Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnology Journal 12:219-230
Rebolledo MC, Dingkuhn M, Courtois B, Gibon Y, Clement-Vidal A, Cruz DF, Duitama J, Lorieux M, Luquet D (2015) Phenotypic and genetic dissection of component traits for early vigour in rice using plant growth modelling, sugar content analyses and association mapping. J Exp Bot 66:5555-5566
Richards RA, Passioura JB (1981) Seminal root morphology and water use of wheat I. environmental effects. Crop Science 21:249-252
Robertson B, Waines J, Gill B (1979) Genetic variability for seedling root numbers in wild and domesticated wheats. Crop Science 19:843-847
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:671
Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis ME, Moore C, Richards RA (2007) A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height. Theor Appl Genet 115:59-66
Suttie JM, Reynolds SG (2004) Fodder oats: a world overview. Food & Agriculture Org.
Uga Y, Assaranurak I, Kitomi Y, Larson BG, Craft EJ, Shaff JE, McCouch SR, Kochian LV (2018) Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D root system image analysis. BMC Genomics 19:273
Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, Schnable JC, Ecker JR, Briggs SP (2016) Integration of omic networks in a developmental atlas of maize 353:814-818
Wang F, Longkumer T, Catausan SC, Calumpang CLF, Tarun JA, Cattin-Ortola J, Ishizaki T, Pariasca Tanaka J, Rose T, Wissuwa M, Kretzschmar T (2018) Genome-wide association and gene validation studies for early root vigour to improve direct seeding of rice. Plant Cell Environ 41:2731-2743
Whitehead C, Ostos Garrido F, Reymond M, Simister R, Distelfeld A, Atienza S, Piston F, D. Gomez L, J. McQueen-Mason S (2018) A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon. New Phytologist 218:974-985
Winkler LR, Bonman MJ, Chao S, Admassu Yimer B, Bockelman H, Esvelt Klos K (2016) Population structure and genotype-phenotype associations in a collection of oat landraces and historic cultivars. Front Plant Sci 7:1077
Wu A-M, Hörnblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant physiology 153:542-554
Yan H, Bekele WA, Wight CP, Peng Y, Langdon T, Latta RG, Fu Y-B, Diederichsen A, Howarth CJ, Jellen EN, Boyle B, Wei Y, Tinker NA (2016) High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. Theor Appl Genet 129:2133-2149
Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology 17:155-160
Zhao D, Atlin G, Bastiaans L, Spiertz J (2006) Comparing rice germplasm groups for growth, grain yield and weed‐suppressive ability under aerobic soil conditions. Weed Research 46:444-452
Zhu J, Mickelson SM, Kaeppler SM, Lynch JP (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet 113:1-10
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72879-
dc.description.abstract種子活力對作物萌芽、苗期植株建立甚至後期的產量、品質都有重要影響。對芻料作物而言,優良的種子活力有助提高作物與雜草的競爭優勢、降低田間管理的成本。燕麥(Avena sativa L.)是世界上重要的芻料作物之一,然而,燕麥種子活力的遺傳結構至今仍未被深入研究。本研究以來自Collaborative Oat Research Enterprise (CORE) 的650個優良燕麥品系及來自美國農業部 National Small Grain Collection (NSGC) 的378個燕麥地方品系為材料,調查兩個族群種子活力的相關性狀並藉由全基因體關聯性分析(genome-wide association study)探討其遺傳結構。本研究建立藉影像分析調查種子活力相關性狀的流程;量測性狀包含:種子根數目、根面積、芽長以及根和芽的生長速率等。調查結果發現大部分的性狀在兩個族群中皆有相當大的變異,並且近似常態分布。全基因體關聯性分析發現42與17個分子標誌在錯誤發現率(False discovery rate, FDR)低於0.1的狀況下分別與根及芽的相關性狀有顯著關聯性。在59個顯著相關的標誌中,22個標誌落在燕麥基因體中七組同源序列片段(homeologous region)、5個標誌的序列在水稻、二穗短柄草、玉米基因體上有高度相似的片段(E-value < 10-10),其中4個標誌位在已知的基因序列中。標誌avgbs_cluster_41284.1.50對應之異種同源基因(orthologous gene)Os06g0146400參與木膠的生合成,而標誌avgbs2_183559.1.25對應之異種同源基因Zm00001d036145則與植物的苗期生長有關。本研究為首次利用全基因體關聯性分析探討燕麥種子活力之遺傳結構,研究所發現顯著相關的位點值得深入研究,以進一步了解燕麥種子活力之遺傳機制。zh_TW
dc.description.abstractSeed vigour is crucial for crop germination and early establishment and influences further biomass production. It is especially important for forage production. Oat (Avena sativa L.) is one of the important forage crops in the world. However, little is known about the genetic architecture of seed vigour in oats. In order to investigate the genetic architecture of seed vigour in oats, we used genome-wide association study (GWAS) based on two diversity panels, one consisted of 650 elite oat lines from Collaborative Oat Research Enterprise (CORE), and the other consisted of 378 landraces from National Small Grains Collection (NSGC). We have developed an image-based phenotyping pipeline to assess oat seed vigour traits, including root number, root surface area, shoot length and growth rates were derived from initial measurements. Most traits showed great variation following the normal distribution. We have identified 42 and 17 markers significantly associated with root and shoot traits at false discovery rate < 0.1, respectively. Twenty-two trait-associated markers fell into seven sets of homeologous regions. Context sequences of five trait-associated markers showed similarity (E-value < 10-10) to gene models from rice, Brachypodium and maize, among which four were located within known gene models. Marker avgbs_cluster_41284.1.50 matched to Os06g0146400, which encoded a glucuronosyltransferase and is involved in the biosynthesis of lignin. Marker avgbs2_183559.1.25 matched to Zm00001d036145, which coded for an iron-sulfur assembly protein and was hypothesize to be related to seedling growth. This study presents the first GWAS on oat seed vigour; loci identified in this study merit further investigation to gain insight of the genetics of oat seed vigour.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:09:00Z (GMT). No. of bitstreams: 1
ntu-108-R06621121-1.pdf: 9327743 bytes, checksum: 0df202f713d8924bc390ea36e3286415 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 viii
1. Introduction 10
1.1 Oat 10
1.2 Seed vigour 11
1.3 Phenotyping seed vigour 11
1.4 Genome-wide association studies of seedling vigour 13
1.5 Objective of the present study 13
2. Materials and methods 15
2.1. Plant materials 15
2.2. Growth condition 15
2.3. Seed vigour phenotyping 16
2.3.1. Image acquisition 16
2.3.2. Image analysis 16
2.3.3. Phenotypic data cleaning 18
2.4. Marker data 19
2.5. Statistical analysis 19
2.6. Sequence alignment to three model genomes 19
3. Results 20
3.1. Analysis of phenotypes of four panels of two replicates 20
3.3. Blast results 23
4. Discussion 25
4.1. Phenotyping pipeline 25
4.2. Phenotypic analysis 27
4.3. GWAS results and candidate gene analysis 28
5. Conclusion 31
References 54
Appendix 59
dc.language.isoen
dc.subject全基因體關聯性分析zh_TW
dc.subject種子活力zh_TW
dc.subject燕麥(Avena sativa L.)zh_TW
dc.subjectOat (Avena sativa L.)en
dc.subjectSeed vigouren
dc.subjectGenome-wide association studyen
dc.title利用全基因體關聯性分析探討優良燕麥品系與燕麥地方種種子活力之遺傳結構zh_TW
dc.titleGenome-wide Association Study Reveals the Genetic Architecture of Seed Vigour in Elite Oat Lines and Landracesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳嘉昇,董致韡,林維怡
dc.subject.keyword燕麥(Avena sativa L.),種子活力,全基因體關聯性分析,zh_TW
dc.subject.keywordOat (Avena sativa L.),Seed vigour,Genome-wide association study,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201901702
dc.rights.note有償授權
dc.date.accepted2019-07-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
9.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved