Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7284
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴育英(Yu-Ying Lai)
dc.contributor.authorChun-Wei Paien
dc.contributor.author白峻維zh_TW
dc.date.accessioned2021-05-19T17:40:58Z-
dc.date.available2021-08-05
dc.date.available2021-05-19T17:40:58Z-
dc.date.copyright2019-08-05
dc.date.issued2019
dc.date.submitted2019-07-26
dc.identifier.citation1. Heeger, A. J., Semiconducting and Metallic Polymers:  The Fourth Generation of Polymeric Materials. The Journal of Physical Chemistry B 2001, 105 (36), 8475-8491.
2. Chou, W.-Y.; Kuo, C.-W.; Cheng, H.-L.; Chen, Y.-R.; Tang, F.-C.; Yang, F.-Y.; Shu, D.-Y.; Liao, C.-C., Effect of surface free energy in gate dielectric in pentacene thin-film transistors. Applied Physics Letters 2006, 89 (11), 112126.
3. 楊皓任; 白峻維; 賴育英, 共軛高分子於有機場效電晶體的應用. 化學期刊 2019, 77, 49-61.
4. Xu, Y.; Sun, H.; Liu, A.; Zhu, H.-H.; Li, W.; Lin, Y.-F.; Noh, Y.-Y., Doping: A Key Enabler for Organic Transistors. Advanced Materials 2018, 30 (46), 1801830.
5. Sirringhaus, H., 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon. Advanced Materials 2014, 26 (9), 1319-1335.
6. Sedra, A. S., Microelectronic circuits. 5th ed. ed.; Oxford University Press: New York, 2004.
7. Resines-Urien, E.; Burzurí, E.; Fernandez-Bartolome, E.; García García-Tuñón, M. Á.; de la Presa, P.; Poloni, R.; Teat, S. J.; Costa, J. S., A switchable iron-based coordination polymer toward reversible acetonitrile electro-optical readout. Chemical Science 2019.
8. Neamen, D. A., Semiconductor physics and devices : basic principles. 4th ed., international ed. ed.; McGraw-Hill: Singapore, 2012.
9. Lee, C.-H.; Lai, Y.-Y.; Hsu, J.-Y.; Huang, P.-K.; Cheng, Y.-J., Side-chain modulation of dithienofluorene-based copolymers to achieve high field-effect mobilities. Chemical Science 2017, 8 (4), 2942-2951.
10. Liao, P.; Carter, E. A., New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chemical Society Reviews 2013, 42 (6), 2401-2422.
11. Rudan, M., Physics of semiconductor devices. Springer New York: New York, NY, 2015.
12. Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J.-L.; Ewbank, P. C.; Mann, K. R., Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chemistry of Materials 2004, 16 (23), 4436-4451.
13. Facchetti, A., Semiconductors for organic transistors. Materials Today 2007, 10 (3), 28-37.
14. Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U., Organic Semiconductors for Solution-Processable Field-Effect Transistors (OFETs). Angewandte Chemie International Edition 2008, 47 (22), 4070-4098.
15. Organic optoelectronics. 1st ed. ed.; John Wiley and Sons: Weinheim, 2013.
16. Wang, Y.; Hasegawa, T.; Matsumoto, H.; Mori, T.; Michinobu, T., High-Performance n-Channel Organic Transistors Using High-Molecular-Weight Electron-Deficient Copolymers and Amine-Tailed Self-Assembled Monolayers. Advanced Materials 2018, 30 (13), 1707164.
17. Zhao, Y.; Guo, Y.; Liu, Y., 25th Anniversary Article: Recent Advances in n-Type and Ambipolar Organic Field-Effect Transistors. Advanced Materials 2013, 25 (38), 5372-5391.
18. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L., Charge Transport in Organic Semiconductors. Chemical Reviews 2007, 107 (4), 926-952.
19. Parr, R. G., Density-functional theory of atoms and molecules. Oxford University Press: New York, 1989.
20. Kohanoff, J., Electronic Structure Calculations for Solids and Molecules Theory and Computational Methods. Cambridge University Press: Leiden, 2006.
21. Eslamian, M.; Zabihi, F., Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices. Nanoscale Research Letters 2015, 10 (1), 462.
22. Shim, E., 10 - Bonding requirements in coating and laminating of textiles. In Joining Textiles, Jones, I.; Stylios, G. K., Eds. Woodhead Publishing: 2013; pp 309-351.
23. Johnston, D. E.; Yager, K. G.; Hlaing, H.; Lu, X.; Ocko, B. M.; Black, C. T., Nanostructured Surfaces Frustrate Polymer Semiconductor Molecular Orientation. ACS Nano 2014, 8 (1), 243-249.
24. Yang, H.-R.; Lai, Y.-Y.; Lee, J.-J., Further Examination of Interconnection in Conjugated Polymers for Organic Field-Effect Transistors. Advanced Electronic Materials 2019.
25. Wang, H.; Xu, Y.; Yu, X.; Xing, R.; Liu, J.; Han, Y., Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport. Polymers 2013, 5 (4).
26. Qiu, L.; Lee, W. H.; Wang, X.; Kim, J. S.; Lim, J. A.; Kwak, D.; Lee, S.; Cho, K., Organic Thin-film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer. Advanced Materials 2009, 21 (13), 1349-1353.
27. Qiu, L.; Lim, J. A.; Wang, X.; Lee, W. H.; Hwang, M.; Cho, K., Versatile Use of Vertical-Phase-Separation-Induced Bilayer Structures in Organic Thin-Film Transistors. Advanced Materials 2008, 20 (6), 1141-1145.
28. Hamilton, R.; Smith, J.; Ogier, S.; Heeney, M.; Anthony, J. E.; McCulloch, I.; Veres, J.; Bradley, D. D. C.; Anthopoulos, T. D., High-Performance Polymer-Small Molecule Blend Organic Transistors. Advanced Materials 2009, 21 (10‐11), 1166-1171.
29. Wang, S.; Fabiano, S.; Himmelberger, S.; Puzinas, S.; Crispin, X.; Salleo, A.; Berggren, M., Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proceedings of the National Academy of Sciences 2015, 112 (34), 10599.
30. Babel, A.; Jenekhe, S. A., Morphology and Field-Effect Mobility of Charge Carriers in Binary Blends of Poly(3-hexylthiophene) with Poly[2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene] and Polystyrene. Macromolecules 2004, 37 (26), 9835-9840.
31. Wu, S., Polymer interface and adhesion. M. Dekker: New York, 1982.
32. Roe, R.-J., Surface tension of polymer liquids. The Journal of Physical Chemistry 1968, 72 (6), 2013-2017.
33. Schonhorn, H.; Sharpe, L. H., Surface tension of molten polypropylene. Journal of Polymer Science Part B: Polymer Letters 1965, 3 (3), 235-237.
34. Choi, J.; Kim, K.-H.; Yu, H.; Lee, C.; Kang, H.; Song, I.; Kim, Y.; Oh, J. H.; Kim, B. J., Importance of Electron Transport Ability in Naphthalene Diimide-Based Polymer Acceptors for High-Performance, Additive-Free, All-Polymer Solar Cells. Chemistry of Materials 2015, 27 (15), 5230-5237.
35. Kuila, T.; Acharya, H.; Srivastava, S. K.; Samantaray, B. K.; Kureti, S., Enhancing the ionic conductivity of PEO based plasticized composite polymer electrolyte by LaMnO3 nanofiller. Materials Science and Engineering: B 2007, 137 (1), 217-224.
36. Mark, J. E., Physical Properties of Polymers Handbook. Springer Science+Business Media, LLC: New York, NY, 2007.
37. Thin solid films (Online). Thin solid films (Online) 1967.
38. Lock, E.; Walton, S.; Fernsler, R., Preparation of Ultra Thin Polystyrene,Polypropylene and Polyethylene Films on Si Substrate Using Spin Coating Technology. Naval Research Laboratory 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7284-
dc.description.abstract本研究合成出共軛高分子P(NDI2OD-T2)並分別以不同比例與三種非共軛高分子進行混摻,分別為 poly(ethylene oxide) (PEO)、atactic polypropylene (aPP)和isotactic polypropylene (iPP),並對共軛高分子的薄膜形貌及電子遷移率進行分析與討論。研究發現在 lamellar stacking(h00)、π-stacking(0k0)和 polymer backbone(00l)三個方向上的相干長度(coherence length)可以通過共軛高分子和非共軛高分子不同的混摻比例進行調節。在不同的混摻比例下,共軛高分子聚集的程度會有所不同,造成 P(NDI2OD-T2)結晶區的相干長度有所變化。原子力顯微鏡指出 PEO40 及 aPP5 展現出明顯的纖維狀結構,代表 P(NDI2OD-T2)聚集的發生,儘管在低比例下 P(NDI2OD-T2)仍然能夠維持著相互的連結。另一方面也因為薄膜形貌上的不同導致有機場效電晶體所量測出的電子遷移率上的差異,其中PEO40(0.133 cm2 V-1 s-1)及aPP5(0.127 cm2 V-1 s-1)展現出和單一P(NDI2OD-T2)(0.106 cm2 V-1 s-1)相當的電子遷移率,表明共軛高分子混摻非共軛高分子能夠有效的降低共軛高分子在元件中的使用比例並且維持和單一共軛高分子相同的載子遷移率,由此藉由迴歸相關性的分析建立了 P(NDI2OD-T2)聚集程度與電子遷移率之間的關係,發現在π-stacking 方向的聚集程度對於電子遷移率有較大的影響,為未來共軛高分子混摻非共軛高分子的系統提出了一個設計方向。zh_TW
dc.description.abstractP(NDI2OD-T2) was synthesized and blended respectively with non-conjugated polymers including poly(ethylene oxide) (PEO), atactic polypropylene (aPP), and isotactic polypropylene (iPP). It was found that the coherence lengths of the lamellar stacking, π-stacking, and polymer backbone can be regulated by the blending proportion of PEO, aPP, or iPP, resulting in the disparity in the thin-film morphology and the electron mobility. Organic field-effect transistor revealed that PEO40 (0.133 cm2 V-1 s-1) and aPP5 (0.127 cm2 V-1 s-1) exhibited electron mobility analogous to P(NDI2OD-T2) (0.106 cm2 V-1 s-1), stressing that the electron mobility of P(NDI2OD-T2) could be preserved in the presence of specific amount of PEO or aPP. Relationship between the coherence lengths of P(NDI2OD-T2) and the electron mobility is established, elucidating the effect of π-stacking and polymer-backbone aggregates in the charge transportation. The P(NDI2OD-T2) aggregation in the π-stacking seems to have a greater influence on the electron mobility.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:58Z (GMT). No. of bitstreams: 1
ntu-108-R06549009-1.pdf: 10138426 bytes, checksum: d6936ba2cbb705897206d27843ae761b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
第一章、緒論 1
1.1 前言 1
1.2 有機場效電晶體簡介 2
1.2.1 有機場效電晶體元件結構及運作原理 2
1.2.2 有機場效電晶體各項參數 3
1.3 p型、n型及雙極性半導體高分子材料介紹 6
1.3.1 p型半導體高分子材料 7
1.3.2 n型半導體高分子材料 8
1.3.3 雙極性半導體高分子材料 9
1.4 電荷轉移理論 10
1.5 有機共軛高分子的薄膜製備 12
1.5.1 滴落塗佈法(drop casting) 12
1.5.2 刮刀塗佈法(Blade coating) 12
1.5.3 旋轉塗佈法(Spin coating) 13
1.6 薄膜形貌 13
1.7 高分子混摻文獻回顧 16
1.8 實驗動機與設計 21
合成路徑圖 23
第二章、結果與討論 24
2.1 單體結構鑑定 24
2.1.1 5,5'-bis(trimethylstannyl)-2,2'-bithiophene(6)結構鑑定 24
2.1.2 2,6-Dibromonaphthalene-1,4,5,8-tetracarboxylic-N,N'-bis (2octyldodecyl) diimide(8)的結構鑑定 25
2.2 高分子合成及結構鑑定 27
2.3 共軛高分子之分子量分析 29
2.4 高分子薄膜態吸收光譜分析 30
2.5 高分子熱性質分析 31
2.6 X光繞射圖譜分析 32
2.6.1 二維X光繞射圖譜 32
2.6.2 共軛高分子及非共軛高分子藉由二維X光繞射進行分析 34
2.6.3 共軛高分子混摻非共軛高分子藉由二維X光繞射進行分析 36
2.7 薄膜形貌分析 39
2.7.1 利用原子力顯微鏡技術分析薄膜表面形貌 39
2.7.2 利用X-射線光電子光譜技術分析薄膜在垂直方向上的形貌 43
2.8 理論計算 45
2.9 有機場效電晶體載子遷移率量測 47
2.10 迴歸分析 48
2.11 與先前工作的比較 50
第三章、結論 51
第四章、實驗 52
4.1 實驗所需化學試劑列表 52
4.2 實驗儀器 53
4.2.1 手套箱(Glove box) 53
4.2.2 核磁共振光譜儀(Nuclear Magnetic Resonance spectrometer;NMR) 53
4.2.3 凝膠滲透層析(Gel Permeation Chromatography;GPC) 53
4.2.4 旋轉塗佈機(Spin Coater) 54
4.2.5 蒸鍍機(Evaporator) 54
4.2.6 紫外光可見光吸收光譜儀(Ultraviolet–Visible Spectrometer;UV/vis) 54
4.2.7 X-射線光電子能譜儀(X-Ray Photoelectron Sprectroscpoe ; XPS) 55
4.2.8 原子力顯微鏡(Atomic Force Microscopy ; AFM) 55
4.3 單體合成 56
4.3.1 1-bromo-2-octyldodecane(2)的合成 56
4.3.2 N-(2-octyldodecyl)phthalimide(3)的合成 57
4.3.3 2-octyldodecylamine(4)的合成 58
4.3.4 5,5’-Bis(trimethylstannyl)-2,2’-bithiophene(6)的合成 59
4.3.5 2,6-Dibromonaphthalene-1,4,5,8-tetracarboxylic-N,N'-bis (2octyldodecyl) diimide(8)的合成 60
4.4 高分子聚合 61
4.5 有機半導體元件製備 62
4.5.1 矽晶圓處理 62
4.5.2 高分子薄膜製備 63
4.5.3 半導體元件電極蒸鍍 65
4.6 有機半導體元件量測 65
參考資料 67
附錄 70
dc.language.isozh-TW
dc.title透過非共軛聚合物調節 P(NDI2OD-T2)形貌及電荷傳遞性質zh_TW
dc.titleRegulation of morphology and charge-transport properties for P(NDI2OD-T2) by non-conjugated polymersen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊小青(Hsiao-Ching Yang),童世煌(Shih-Huang Tung),邱昱誠(Yu-Cheng Chiu)
dc.subject.keyword有機場效電晶體,n型半導體,薄膜形貌,電子遷移率,zh_TW
dc.subject.keywordOFET,n-type semiconductor,film morphology,electron mobility,en
dc.relation.page112
dc.identifier.doi10.6342/NTU201901986
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf9.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved