Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72826
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊宏(Chun-Hung Lin)
dc.contributor.authorChia-Yu Chenen
dc.contributor.author陳佳妤zh_TW
dc.date.accessioned2021-06-17T07:07:19Z-
dc.date.available2024-08-18
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-07-24
dc.identifier.citation1. M. P. Kçtzler, S. M. Hancock, S. G. Withers, Glycosidases: Functions, Families and Folds; eLS. John Wiley & Sons, Ltd: Chichester, 2014, p 1-14.
2. B. Henrissat, Biochem. J., 1991, 280, 309-316.
3. B. L. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, B. Henrissat, Nucleic Acids Res., 2009, 37, D233-238.
4. (a) P. M. Coutinho, B. Henrissa, Carbohydrate-active enzymes: an integrated database approach; (b) H. J. Gilbert, G. Davies, B. Henrissa, Bioengineering. Recent advances in Carbohydrates; B. Svensson, Ed.; The Royal Society of Chemistry: Cambridge, UK, 1999, p 3-12.
5. (a) D. E. Koshland, Biol. Rev. Camb. Philos. Soc., 1953, 28, 416-436; (b) G. Davies, B. Henrissa, Structure, 1995, 3, 853-859.
6. J. D. McCarter, S. G. Withers, Curr. Opin. Struct. Biol., 1994, 4, 885-892.
7. H. Masamune, J. Biochem., 1934, 19, 353-375.
8. S. Jain, W. B. Drendel, Z. Chen, F. S. Methews, W. S. Sly, J. H. Grubb. Nat. Struct. Biol., 1996, 3, 375-381.
9. H. Naz, A. Islam, A. Waheed, W. S. Sly, F. Ahmad, M. I. Hassan, Rejuvenation Res., 2013, 16, 353-363.
10. S. Tomatsu, A. M. Montaño, V. C. Dung, J. H. Grubb, W. S. Sly, Hum Mutat., 2009, 30, 511-519.
11. B. D. Wallace, H. Wang, K. T. Lane, J. E. Scott, J. Orans, J. S. Koo, M. Venkatesh, C. Jobin, L. Yeh, S. Mani, M. R. Redinbo, Sceince, 2010, 330, 831-835.
12. C. Guillenmette, É. Lévesque, M. Rouleau. Clin. Phanrmacol. Ther., 2014, 96, 329-339.
13. (a) R. H. J. Mathijssen, R. J. Alphen, J. Verweij, W. J. Loos, K. Nooter, G. Stoter, A. Sparreboom. Clin. Cancer Res., 2001, 7, 2182-2194; (b) M. K. Ma, H. L. McLeod, Curr. Med. Chem., 2003, 10, 41-49; (c) A. Stein, W. Voigt, K. Jordan, Ther Adv Med Onco., 2010, 2, 51-63; (d) K.-W. Cheng, C. -H. Tseng, C. -C. Tzeng, Y. -L. Leu, T. -C. Cheng, J. -Y. Wang, J. -M. Chang, Y. -C. Lu, C. -M. Cheng, I. -J. Chen, Y. -A. Cheng, Y. -L. Chen, T. -L. Cheng, Pharmacol Res., 2019, 139, 41-49.
14. Iminosugars: From Synthesis to Therapeutic Applications; P. Compain, O. R. Martin, Eds.; John Wiley: Chichester, UK, 2007.
15. H. Paulsen, Angew. Chem. Int. Ed. Engl., 1966, 5, 490-510.
16. S. Inouye, T. Tsuruoka, T. J. Niida, J. Antibiot., 1966, 19, 288.
17. (a) T. M. Jespersen, W. Dong, M. R. Sierks, T. Skrydstrup, Inge, Lundt, M. Bols, Angew. Chem. Int. Ed. Engl., 1994, 33, 1778-1779; (b) H. Li, Y. Blériot, C. Chantereau, J. Mallet, M. Sollogoub, Y. Zhang, E. Rodríguez-García. P. Vogel, J. Jiménez-Barbero, P. Sinaÿ, Org. Biomol. Chem., 2004, 2, 1492-1499; (c) G. Godin, E. Garnier, P. Compain, O. R. Martin, K. Ikeda, N. Asano, Tetrahedron Lett., 2004, 45, 579-581; (d) L. D. Hohenschutz, E. A. Bell, P. J. Jewess, D. P. Leworthy, R. J. Pryce, E. Arnold, J. Clardy. Phytochemistry., 1981, 20, 811-814; (e) J. E. Tropea, A. D. Elbein. J. Nat. Prod., 1988, 51, 1198-1206; (f) A. Lohse, K. B. Jensen, K. Lundgren, M. Bols, Bioorg. Med. Chem., 1999, 7, 1965-1971.
18. P. Compain, V. Chagnault, O. R. Martin, Tetrahedron: Asymmetry, 2009, 20, 672-711.
19. H. Paulsen, K. Todt, Chem. Ber., 1967, 100, 3385-3396.
20. G. Masson, P. Compain, O. R. Martin, Org. Lett., 2000, 2, 2971-2974.
21. X. Zhu, K. A. Sheth, S. Li, H. -H. Chang, J. -Q. Fan, Angew. Chem. Int. Ed., 2005, 44, 7450-7453.
22. (a) L. Cipolla, B. L. Ferla, F. Peri, F. Nicotra, Chem. Commun., 2000, 1289-1290; (b) X. Cheng, G. Kumaran, D. R. Mootoo, Chem. Commun., 2001, 811-812; (c) M. Mitchell, L. Qaio, C. -H. Wong, Adv. Synth. Catal., 2001, 343-365.
23. (a) O. R. Martin, O. M. Saavedra, F. Xie, L. Liu, S. Piscasso, P. Vogel, H. Kizu, N. Asano, Bioorg. Med. Chem., 2001, 1269-1278; (b) L. J. Liotta, J. Lee, B. Ganem, Tetrahedron, 1991, 2433-2447.
24. (a) A. Dondoni, A. Nuzzi, J. Org. Chem., 2006, 71, 7254; (b) B. A. Johns, C. R. Johnson, Tetrahedron Lett., 1998, 39, 749-752.
25. E. V. Carstense, H. I. Duynstee, M. J. Overhand, J. Carbohydr. Chem., 2004, 22, 241-252.
26. I. Bruce. G. W. J. Fleet, I. C. Bello, B. Winchester. Tetrahedron Lett., 1989, 30, 7257-7260.
27. I. Bruce. G. W. J. Fleet, I. C. Bello, B. Winchester. Tetrahedron, 1992, 48, 10191-10200.
28. (a) L. Pauling, Nature, 1948, 161, 707-709; (b) T. M. Gloster, G. J. Davies, Org. Biomol. Chem., 2010, 8, 305-320.
29. L. Pauling, Chem. Eng. News Archive., 1946, 24, 1375-1377.
30. J. Pabba, B. P. Rempel, S. G. Withers, A. Vasella, Helv. Chim. Acta., 2006, 89, 635-666.
31. P. Dashnyam, R. Mudududdla, T. -J. Hsieh, T. -C. Lin, H. -Y. Lin, P. -Y. Chen, C. -Y. Hsu, C. -H. Lin, Sci Rep., 2018, 8, 1-12.
32. M. Kataoka, Y. Hayakawa, J. Org. Chem., 1999, 64, 6087-6089.
33. K. Manindar, H. Zhen, Sci. China Chem., 2014, 57, 314-321.
34. C. Parmeggiani, C. Matassini, F. Cardona, Green Chem., 2017, 19, 2030-2050.
35. C. H. MacKinnon, K. Lau, J. D. Bruch, Y. Chen, J. Dines, X. Ding, C. Eigenbrot. A. Heifetz, A. Jaochico, A. Johnson, J. Kraemer, S. Kruger, T. M. Krülle, M. Kiimatta, J. Ly, R. Maghames, C.A.G. N. Montalbetti, D. G. Ortwine, Y. P. Fuertes, S. Shia, D. B. Stein, G. Ttrani, D. G. Vaidya, X. Wang, S. M. Bromidge, L. C. Wu, Z. Pei, Bioorg. Med. Chem. Lett., 2013, 23, 6331-6335.
36. F. F. Hilário, R. C. Paula, M. L. T. Silveira, G. H. R. Viana, R. B. Alves, J. R. C. S. Pereira, L. M. Silva, R. P. Freitas, F. P. Varotti, Chem. Biol. Drug. Des., 2011, 78, 477-482.
37. 林仙雅 (2016)。以結構資訊為基礎來開發半乳糖凝集素及乙型葡萄糖醛酸酶之抑制物。國立臺灣大學化學研究所博士論文,未出版,國立臺灣大學,台北 市。
38. 林鼎堅 (2018)。針對醣苷水解酶發展具有親和力與選擇性之抑制劑。國立臺灣大學化學研究所博士論文,未出版,國立臺灣大學,台北市。
39. (a) C. -Y. Wu, C. -F. Chang, J. S. -Y. Chen, C, -H, Wong, C. -H. Lin, Angew. Chem. Int. Ed., 2003, 42, 4661-4664; (b) C. -F. Chang, C. -W. Ho, C. -Y. Wu, T. -A. Chao, C. -H. Wong, C. -H. Lin, Chem. Biol., 2004, 11, 1301-1306.
40. P. Spannring, P. C. A. Bruijnincx, B. M. Weckhysen, R. J. M. K. Gebbink, Catal. Sci. Technol., 2014, 4, 2182-2209.
41. S. M. Sondhi, R. Rani, P. Roy, S. K. Agrawal, A. K. Saxena, Eur. J. Med. Chem., 2010, 45, 902-908.
42. M. Marsuzawa, K. Kubo, H. Kodama, M. Funavashi, J. Yoshimura, Bull. Chem. Soc, Jpn., 1981, 54, 2169-2173.
43. J. Andersch, M. Bols, Chem. Eur. J., 2001, 7, 3745-3747.
44. T. Rölle, R. W. Hoffmann, Helv. Chim. Acta., 2004, 87, 1214-1227.
45. E. D. Goddard-Borger, R. V. Sitck, Aust. J. Chem., 2007, 60, 211–213.
46. P. J. Meloncelli, R. V. Sitck, Aust. J. Chem., 2006, 59, 827-833.
47. E. Danieli, J. Lalot, P. V. Murphy. Tetrahedron, 2007
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72826-
dc.description.abstract已知腸道菌相於人體代謝機制中扮演重要的角色。其中,葡萄糖醛酸化為人體重要的化合物代謝機制之一,幫助體內疏水性之外源化合物增加親水性並代謝至體外。腸道菌表現之β-葡萄糖醛酸苷酶 (GUS) 可將接有葡萄糖醛酸的醣苷配基水解並重新釋出,因此該酵素是生物活性化合物的再活化與內源性分子的回收再利用的關鍵酵素,然而其中部分具有毒性的醣苷配基再釋出會導致腸道損傷。為針對該問題提出解決方案,本研究將細菌GUS作為欲抑制的標的物,以化學合成方式製備亞胺醣分子,實驗發現uronic isofagomine (UIFG) 在生理pH值下被質子化,可模擬GUS反應過渡態之電性特徵,為好的GUS抑制物。
為進一步開發選擇性抑制細菌GUS的抑制劑,合成UIFG C6與N位置之衍生物。初步實驗結果指出C6位置之衍生具有提升親和性與選擇性的決定效果,故本研究進一步開發並合成C6-aminomethyl UIFG,提供較有效率的合成策略,預期利用組合式化學,可快速合成一系列候選化合物,用以篩選更具潛力及選擇性之細菌GUS抑制劑。
zh_TW
dc.description.abstractGastrointestinal microbiota plays an important role in shaping many metabolic pathways. One example is glucuronidation of xenobiotics, which occurs in the liver to conjugate hydrophobic compounds with glucuronic acid (a monosaccharide) to increase their solubility and then facilitate rapid excretion. Microbiome-encoded β-glucuronidases (GUSs) that catalyze the hydrolytic removal of glucuronic acid are known to be critical to regenerate bioactive compounds and recycle endogenous molecules. However, these enzymes also represent the main cause of xenobiotics-induced toxicity.
To develop potent and selective inhibitors for gut bacterial GUSs, herein we report the chemical synthesis of several iminosugars that often display satisfying potency. Among them, uronic-type isofagomine (UIFG) can be protonated at physiological pH to be a good mimicry of the transition state in β-glucuronidase-catalyzed reactions.
We designed and synthesized several UIFG derivatives according to previous structure-activity relationship studies of GUS inhibitors, including N- and C6-substituted UIFGs. The preliminary results indicated that the substitution at C6 increased the affinity and selectivity at the same time. Also, we developed an efficient synthesis of C6-aminomethyl UIFG which can be further diversified by combinatorial chemistry to search for more potent and selective inhibitors.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:07:19Z (GMT). No. of bitstreams: 1
ntu-108-R06223102-1.pdf: 19707180 bytes, checksum: 1017d53192098af9bb87954e6793dc2b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄

中文摘要
英文摘要
縮寫對照表i
中英對照表iv
圖目錄x
流程目錄xii
表目錄xiv
第一章 緒論 1
1.1 醣類水解酶 (Glycoside hydrolases) 的介紹與分類 1
1.1.1 醣類水解酶的分類 1
1.1.2 醣類水解酶的催化反應機制1
1.2 β-葡萄糖醛酸苷酶 (β-glucuronidase) 的介紹及其重要性 4
1.2.1 人類之β-葡萄糖醛酸苷酶4
1.2.2 細菌之β-葡萄糖醛酸苷酶 5
1.3 重要醣類水解酵素抑制劑之文獻回顧與製備方法8
1.3.1 文獻回顧 8
1.3.2 亞胺醣製備方法探討. 10
1.4 研究目標14
1.4.1 細菌β-葡萄糖醛酸苷酶抑制劑之設計原則14
第二章 結果與討論20
2.1 製備與開發過渡態類似物作為細菌β-葡萄糖醛酸苷酶抑制20
2.1.1 化合物 15 的合成與討論20
2.1.2 化合物 15 之氧化合成策略之討論22
2.1.3 化合物 2 的合成與討論24
2.1.4 β-葡萄糖醛酸苷酶過渡態類似物之活性測試與探討25
2.2 合成與開發具有潛與選則性之細菌 β-葡萄糖醛酸苷酶抑制劑27
2.2.1 化合物 1 之氮衍生物的設計與合成策略27
2.2.2 化合物 N1 的合成28
2.2.3 化合物 N2 的合成29
2.2.4 化合物 N3 的合成31
2.2.5 化合物 1 之氮衍生物抑制活性的測試與討論31
2.2.6 化合物1之氮衍生物與C-6衍生物作為選擇性抑制劑的比較與探討33
2.2.7 設計新的分子作為選擇性抑制劑之先導化合物34
2.3 目標分子 (C6-aminomethyl UIFG) 的合成與討論 36
2.3.1 目標分子的逆合成分析與探討36
2.3.2 目標分子之前驅物的合成與討論36
2.3.3 目標分子 C6-aminomethyl UIFG 的合成 40
2.4 目標分子 (C6-aminomethyl UIFG) 的合成路徑的改良與討論.41
2.4.1 含酮基之中間產物 40 的製備41
2.4.2 酮基化合物 40 的加成反應與討論42
2.4.3 酮基化合物 42 的合成與其加成反應之探討44
2.4.4 化合物 48 的合成與討論46
2.4.5 合成路徑的比較與討論48
2.5 結論與討論 49
第三章 實驗部分51
3.1 基本實驗步驟與分析儀器51
3.2 合成步驟與光譜資料. 53

第四章 參考文獻91
附錄
dc.language.isozh-TW
dc.subjectβ-葡萄糖醛酸??zh_TW
dc.subject抑制劑zh_TW
dc.subject亞胺醣zh_TW
dc.subjectUronic-type isofagomine (UIFG)zh_TW
dc.subjectC6-aminomethyl UIFGzh_TW
dc.subjectβ-glucuronidasesen
dc.subjectinhibitorsen
dc.subjectiminosugaren
dc.subjecturonic-type isofagomine (UIFG)en
dc.subjectC6-aminomethyl UIFG.en
dc.title有效合成亞胺醣類衍生物作為細菌β-葡萄糖醛酸苷酶的抑制劑zh_TW
dc.titleEfficient Synthesis of Iminosugars as Bacterial β-Glucuronidase Inhibitorsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee方俊民(Jim-Min Fang),鄭偉杰(Wei-Chieh Cheng)
dc.subject.keywordβ-葡萄糖醛酸??,抑制劑,亞胺醣,Uronic-type isofagomine (UIFG),C6-aminomethyl UIFG,zh_TW
dc.subject.keywordβ-glucuronidases,inhibitors,iminosugar,uronic-type isofagomine (UIFG),C6-aminomethyl UIFG.,en
dc.relation.page203
dc.identifier.doi10.6342/NTU201901075
dc.rights.note有償授權
dc.date.accepted2019-07-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
19.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved