Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72811
標題: 極小拉格朗日子流形與拉格朗日均曲率流孤立子的穩定性
Stability of Minimal Lagrangian Submanifolds and Soliton Solutions for Lagrangian Mean Curvature Flow
作者: Wei-Bo Su
蘇瑋栢
指導教授: 李瑩英(Yng-Ing Lee)
共同指導教授: 蔡忠潤(Chung-Jung Tsai)
關鍵字: 拉格朗日子流形,f-穩定性,均曲率流,孤立子,動態穩定性,
Lagrangian Submanifolds,f-stability,Mean Curvature Flow,Soliton Solutions,Dynamic Stability,
出版年 : 2019
學位: 博士
摘要: 在文章中我們將會探討加權體積泛函的極值點在假設為拉格朗日子流形的條件下的線性穩定性和動態穩定性條件。其中,線性穩定性關心的是加權體積泛函的二階變分的正則性,而動態穩定性關心的是極值點附近的點在加權體積泛函的負梯度流之下的長時間存在性和收斂性。
在線性穩定性方面,我們藉由推廣 Chen [Che81] 和 Oh [Oh90] 的體積二階變分式到有加權的情況,從而得到一般 f-極小拉格朗日子流形的線性穩定條件。經由選取特定的加權函數 f,我們便由此得到拉格朗日均曲率流孤立子的穩定性條件。特別地,所有拉格朗日擴張孤立子和平移孤立子都是線性穩定的。我們也觀察到拉格日平移孤立子可以看作是加權體積意義下的校準子流形,所以可看作是特殊拉格朗日子流形的一種推廣。
我們也研究了某些複歐式空間中的極小拉格朗日子流形與拉格朗日擴張孤立子的動態穩定性。由於這些子流形必定非緊緻,我們假定這些子流形是漸進錐狀然後證明了拉格朗日均曲率流在此條件下的短時間存在性。再進一步假設 SO(m)-對稱性的情形下我們可以得到一個長時間存在性和收斂性的定理,亦即滿足這些條件的極小拉格朗日子流形與拉格朗日擴張孤立子是動態穩定的。
Stability provides important information about critical points of some functionals. In this thesis, the class of functionals we are interested in are the $f$-volume functionals defined on the space of Lagrangian submanifolds in a K'ahler manifold $X$, where $f$ is a function on $X$. The critical points for the $f$-volume functional are called the $f$-minimal Lagrangian submanifolds, which are generalizations of minimal Lagrangian submanifolds and soliton solutions for Lagrangian mean curvature flow. We study two different notions of stability with respect to the $f$-volume functional, namely the linear stability and dynamic stability.
The linear stability concerning the positivity of second variation of $f$-volume functional at an $f$-minimal Lagrangian submanifold. We derive a second variation formula for $f$-minimal Lagrangian submanifolds, which is a generalization of the second variation formula by Chen [Che81] and Oh [Oh90]. Using this we obtain stability criterions for $f$-minimal Lagrangian submanifolds in gradient K'ahler--Ricci solitons. In particular, we show that expanding and translating solitons for Lagrangian mean curvature flow are $f$-stable.
The dynamic stability on the other hand regarding the existence and convergence of the negative gradient flow of the $f$-volume functional, the generalized Lagrangian mean curvature flow, starting from an initial data nearby a critical point. Since the examples of $f$-minimal Lagrangians we are most interested in are complete noncompact, we first prove a short-time existence for asymptotically conical Lagrangian mean curvature flow. Then we give some long-time existence and convergence results for equivariant, almost-calibrated, asymptotically conical Lagrangian mean curvature flow in $mathbb{C}^{m}$.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72811
DOI: 10.6342/NTU201901798
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.55 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved