請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72794完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣本基(Pen-Chi Chiang) | |
| dc.contributor.author | Wei-Yu Chen | en |
| dc.contributor.author | 陳威宇 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:06:24Z | - |
| dc.date.available | 2021-02-22 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-01 | |
| dc.identifier.citation | Melody, T. L. (2014). Air Pollution 101: The Fundamentals of Pollutants. EEA Report No 13. (2017). Air Quality in Europe – 2017 Report. Amann, M., Derwent, D., Forsberg, B., and Hänninen, O. (2008). Health Risks of Ozone from Long-Range Transboundary Air Pollution. Sillman, S., Logan, J., and Wofsy, S. C. (1990). 'The Sensitivity of Ozone to Nitrogen Oxides and Hydrocarbons in Regional Ozone Episodes. ' Journal of Geophysical Research Atmospheres 95: 1837–1851. Camredon, M., Aumont, B., Taylor, J. L., and Madronich, S. (2007). 'The SOA/VOC/NOx System: An Explicit Model of Secondary Organic Aerosol Formation. ' Atmospheric Chemistry and Physics 7: 5599–5601. Burdock, G. A. (2009). Fenaroli’s Handbook of Flavor Ingredients. Boca Raton: CRC Press. Chhibber-Goel, J., Gaur, A., Singhal, V., Parakh, N., Bhargava, B., and Sharma, A. (2016). 'The Complex Metabolism of Trimethylamine in Humans: Endogenous and Exogenous Sources.' Expert Reviews in Molecular Medicine 18 :1-3 Kim, SG., Bae, HS., and Lee, ST. (2001). 'A Novel Denitrifying Bacterial Isolate That Degrades Trimethylamine Both Aerobically and Anaerobically via Two Different Pathways'. Arch Microbiol 176: 271–277. Healy, R.M., Evans, G.J., and Murphy, M. (2015). 'Single-particle Speciation of Alkylamines in Ambient Aerosol at Five European Sites.' Anal Bioanal Chem 407: 5899–5909. Murphy, S. M., Sorooshian, A., Kroll, J. H., Ng, N. L., Chhabra, P., Tong, C., Surratt, J. D., Knipping, E., Flagan, R. C., and Seinfeld, J. H. (2007). 'Secondary Aerosol Formation from Atmospheric Reactions of Aliphatic Amines. ' Atmospheric Chemistry and Physics 7(9): 2313-2337. Pan, S., Wang, P., Chen, Q., Jiang, W., Chu, Y., and Chiang, P. (2017). 'Development of High-gravity Technology for Removing Particulate and Gaseous Pollutant Emissions: Principles and Applications. ' Journal of Cleaner Production 149: 540-556. Cortes Garcia, G. E., van der Schaaf, J., and Kiss, A. A. (2017). 'A Review on Process Intensification in HiGee Distillation. ' Journal of chemical technology and biotechnology 92(6): 1136-1156. Wang, G.Q., Xu, Z., and Jian-bing, J. (2011). 'Progress on Higee Distillation—Introduction to a New Device and Its Industrial Applications. ' Chemical Engineering Research Design 89: 1434-1442. Barauskas D., Dzikaras M., and Bieliauskas D. (2020). 'Selective Ultrasonic Gravimetric Sensors Based on Capacitive Micromachined Ultrasound Transducer Structure-A Review.' Sensors 20(12): 3554 Wang, Chao., Xu, Zhijie., Lai, Canhai., and Sun, Xin. (2018). 'Beyond the Standard Two-film Theory: Computational Fluid Dynamics Simulations for Carbon Dioxide Capture in a Wetted Wall Column.' Chemical Engineering Science 184: 103-110 Van Elk, E. P., Knaap, M. C., and Versteeg, G. F. (2007). 'In: Chemical Engineering Research and Design.' 85(4): 516-524. Balagam B., and Richardson DE. (2008). 'The Mechanism of Carbon Dioxide Catalysis in the Hydrogen Peroxide N-oxidation of Amines.' Inorganic Chemistry 47(3): 1173-1178. S. M. Murphy., A. Sorooshian., J. H. Kroll., N. L. Ng., and P. Chhabra. (2007). 'Secondary Aerosol Formation from Atmospheric Reactions of Aliphatic Amines.' Atmospheric Chemistry and Physics Discussions 7(9): 2313-2337. Takahiro Hirano., Hiroshi Kurosawa., Kazuo Nakamura., and Yoshifumi Amano. (1996).'Simultaneous Removal of Hydrogen Sulfide and Trimethylamine by a Bacterial Deodorant.' Journal of Fermentation and Bioengineering 81(4): 337-342. James R. Kastner., Keshav C. Das., Cheng Hu., and Ron McClendon. (2003). 'Effect of pH and Temperature on the Kinetics of Odor Oxidation Using Chlorine Dioxide' Journal of the Air Waste Management Association 53(10): 1218-1224. William Wesley Eckenfelder., Alan R. Bowers., and John A. Roth. (1992). Chemical Oxidation: Technology for the Nineties. Lin, Chia-Chang., and Su, Yu-Ren. (2008). 'Performance of Rotating Packed Beds in Removing Ozone from Gaseous Streams.' Separation and Purification Technology 61: 311-316. Chen, T., Chen, Y., and Chiang, P. (2020). 'Enhanced Performance on Simultaneous Removal of NOx-SO2-CO2 Using a High-gravity Rotating Packed Bed and Alkaline Wastes Towards Green Process Intensification.' Chemical Engineering Journal 393: 124678. Lin, C., and Chien, K. (2008). 'Mass-transfer Performance of Rotating Packed Beds Equipped with Blade Packings in VOCs Absorption into Water.' Separation and Purification Technology 63: 138-144. Chia-Chang Lin., and Guo-Shing Jian. (2007). 'Characteristics of a Rotating Packed Bed Equipped with Blade Packings.' Separation and Purification Technology 54(1): 51-60. Dipaloy Datta., Yavuz Selim Aşçı., and Amaç Fatih Tuyun. (2015). 'Intensification of Citric Acid Extraction by a Mixture of Trioctylamine and Tridodecylamine in Different Diluents.' Journal of Chemical Engineering Data 60(3): 960-965 Huang, C.H., and Chen, Y.H. (2017). 'The Study on Gas Composition and Efficiency of Producing Chlorine Dioxide As Well As the Storage Conditions of Chlorine Dioxide Solution.' In Chemical engineering, National Taipei University of Technology, Taipei. Changha Lee., Carsten Schmidt., Jeyong Yoon., and Urs von Gunten. (2007). 'Oxidation of N-Nitrosodimethylamine (NDMA) Precursors with Ozone and Chlorine Dioxide: Kinetics and Effect on NDMA Formation Potential.' Environmental Science Technology 41(6): 2056-2063 ToolBox, E. (2003). Gases - Densities. ToolBox, E. (2004a). Liquid Densities. ToolBox, E. (2004b). Surface Tension of Water in contact with Air. ToolBox, E. (2008a). Diffusion Coefficients of Gases in Water. ToolBox, E. (2008b). Dynamic Viscosity of common Liquids. ToolBox, E. (2014). Gases - Dynamic Viscosity. Chen, Y.-S., Lin, F.-Y., Lin, C.-C., Tai, C. Y.-D., and Liu, H.-S. (2006). 'Packing Characteristics for Mass Transfer in a Rotating Packed Bed.' Industrial Engineering Chemistry Research 45(20): 6846-6853. Chen, Tse-Lun., Chen, Yi-Hung., and Chiang, Pen-Chi. (2020). 'Application of Gaseous ClO2 on Disinfection and Air Pollution Control: A Mini Review.' Aerosol and Air Quality Research 20(11): 2289-298 Chen, Y.-S. (2011). 'Correlations of Mass Transfer Coefficients in a Rotating Packed Bed.' Industrial Engineering Chemistry Research 50(3): 1778-1785. Onda, K., Takeuchi, H., and Okumoto, Y. (1968). 'Mass Transfer Coefficients Between Gas and Liquid Phases in Packed Columns.' J. Chem. Eng. Jpn., 1, 56. Pan, S.-Y., Wang, P., Chen, Q., Jiang, W., Chu, Y.-H., and Chiang, P.-C. (2017). 'Development of High-gravity Technology for Removing Particulate and Gaseous Pollutant Emissions: Principles and Applications.' Journal of Cleaner Production 149: 540-556. Ling-Jung Hsu., and Chia-Chang Lin. (2012). 'Binary VOCs Absorption in a Rotating Packed Bed with Blade Packings.' Journal of Environmental Management 98: 175-182. Wenhui Li., Haidi Liu., Shuangde Li., Weiman Li., Yunfa Chen., Jiajia Gao., and Yaqun Cao. (2018). 'Removal of Hydrophobic Volatile Organic Compounds with Sodium Hypochlorite and Surfactant in a Co-current Rotating Packed Bed.' Journal of Environmental Sciences 64: 190-196 Yu-Shao Chen., and Hwai-Shen Liu. (2002). 'Absorption of VOCs in a Rotating Packed Bed.' Industrial Engineering Chemistry Research 41(6): 1583-1588 Chia-Ying Chiang., Yi-Ying Liu., Yu-Shao Chen., and Hwai-Shen Liu. (2012). 'Absorption of Hydrophobic Volatile Organic Compounds by a Rotating Packed Bed. ' Industrial Engineering Chemistry Research 51(27): 9441-9445 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72794 | - |
| dc.description.abstract | 近幾年,空氣污染的問題越來越受到重視,其中臭異味的問題更是一般民眾可以感受到的,然而這些臭異味的來源主要為揮發性有機物,因此本研究使用三甲胺做為主要的揮發性有機物,並引入超重力旋轉床,透過它的高質傳效果搭配一些化學藥劑進行化學洗滌。本研究在適當的操作條件下,僅使用超重力旋轉床進行吸收去除,便可達到82.8%以上的去除效率。此外,加入相對於三甲胺兩倍莫耳數的二氧化氯、過氧化氫以及檸檬酸進行化學洗滌,整體的最大去除效率可以分別達到99.4%、95.9%和92.1%。同時本研究也透過發展理論模式來預估質傳係數,並且和實際值進行兩者間的誤差比較。最後,本研究在化工廠中進行實廠實驗,並利用其他種類的揮發性有機物做為標的,如甲醇、丙烯酸甲酯等,進行三階段的可行性評估,結果顯示僅加入二氧化氯,去除效率僅達到69%,且同時會產生二氧化氯氣味;另一方面,僅使用超重力旋轉床進行吸收,可達到91%的去除效率,且對臭味改善效果較好。最後,若是同時加入二氧化氯並使用超重力旋轉床進行吸收,可以達到99.1%的去除效率並有效去除臭異味。 | zh_TW |
| dc.description.abstract | In recent years, the problem of air pollution has received more and more attention, and the problem of odor is even more common to the general public. However, the source of these odors are mainly volatile organic compounds. Therefore, trimethylamine was used as the main volatile organic compounds in this study. In addition, high-gravity rotating packed bed was introduced for chemical oxidation through its high mass transfer effect with some chemical agents. In this study, under proper operating conditions, only a high-gravity rotating bed was used for absorption, a removal efficiency of over 82.8% could be achieved. Moreover, adding chlorine dioxide, hydrogen peroxide, and citric acid twice the moles of trimethylamine for chemical oxidation, the overall maximum removal efficiency can reach 99.4%, 95.9%, and 92.1%, respectively. At the same time, a theoretical model was also developed in this research to estimate the overall mass transfer coefficient, and compare with the actual value. Finally, field experimentation was conducted in a petrochemical plant, and other types of volatile organic compounds were used as targets, such as methanol, methyl acrylate, etc. In the three-stage feasibility evaluation, the results showed that when only adding chlorine dioxide, the removal efficiency was only 69%, and odor of chlorine dioxide was generated; on the other hand, only using the high-gravity rotating packed bed for absorption, it could reach 91% the removal efficiency, and the odor improvement effect was better. Finally, if chlorine dioxide was added and the high-gravity rotating packed bed was used for absorption at the same time, the removal efficiency of 99.1% can be achieved and the odor can be effectively removed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:06:24Z (GMT). No. of bitstreams: 1 U0001-0601202108045900.pdf: 4038875 bytes, checksum: cbefaef1e00dbdd6ae0a14f1f83db96b (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv Contents v List of Figures vii List of Tables xi Chapter 1 Introduction 1-1 1.1 Significance and Importance 1-1 1.1.1 VOCs Emissions 1-1 1.1.2 VOCs Harmful Effects 1-4 1.1.3 VOCs Odors 1-5 1.1.4 VOCs Removal 1-6 1.2 Objectives 1-8 Chapter 2 Literature Reviews 2-1 2.1 Trimethylamine 2-1 2.1.1 Physicochemical Characteristics of Trimethylamine 2-1 2.1.2 Exposure and Impacts of Trimethylamine 2-2 2.2 Gaseous Pollutant Control Equipment 2-5 2.2.1 High-Gravity Rotating Pecked Bed 2-6 2.3 Absorption 2-10 2.3.1 Physical Absorption and Chemical Absorption 2-11 2.3.2 Mass Transfer 2-13 2.4 Chemical Scrubbing 2-20 2.4.1 Hydrogen Peroxide Oxidation 2-20 2.4.2 Citric Acid Neutralization 2-22 2.4.3 Chlorine Dioxide Oxidation 2-22 Chapter 3 Materials and Methods 3-1 3.1 Research Framework 3-1 3.2 Materials 3-2 3.2.1 Source of Agents 3-2 3.2.2 Equipment 3-2 3.3 Experimental Process in Laboratory 3-6 3.4 Experimental Design in Field Test 3-11 3.4.1 Pollutant Target 3-11 3.4.2 Equipment Specifications 3-11 3.4.3 Experimental Process 3-15 Chapter 4 Results and Discussion 4-1 4.1 Evaluation of TMA Removal Efficiency and Mass Transfer Coefficient 4-1 4.1.1 Preliminary Evaluation of TMA Removal Using RPB Absorption 4-1 4.1.2 Evaluation of TMA Overall Mass Transfer Coefficient (KGa) Using RPB Absorption 4-4 4.1.3 Comparison of Removal Efficiency and Mass Transfer Coefficient (KGa) Using RPB Absorption 4-9 4.2 Enhancement of TMA Removal Efficiency 4-13 4.2.1 Combination of Chemical Oxidation and Absorption on TMA Removal 4-13 4.2.2 Determination of Maximum Achievable Removal Efficiency (MARE) 4-16 4.2.3 Comparison of Different Chemical Agents for TMA Removal 4-20 4.3 Development of Overall Mass Transfer Model 4-23 4.3.1 Parameters Used for Modeling 4-23 4.3.2 Effects of Absorption on Overall Mass Transfer Model 4-25 4.3.3 Overall Mass Transfer Model for the Chemical oxidation 4-26 4.4 Field Test Demonstration of VOCs Removal 4-30 4.4.1 Addition of Gaseous Chlorine Dioxide for Oxidation Test 4-30 4.4.2 HiGee RPB Absorption Test 4-32 4.4.3 Combination of Addition of Gaseous Chlorine Dioxide for Oxidation and HiGee RPB Absorption 4-37 Chapter 5 Conclusion 5-1 5.1 Conclusions 5-1 5.2 Recommendations 5-2 Chapter 6 Reference 6-1 Chapter 7 Appendix 7-1 | |
| dc.language.iso | en | |
| dc.subject | 揮發性有機物減量 | zh_TW |
| dc.subject | 超重力旋轉填充床 | zh_TW |
| dc.subject | 三甲胺 | zh_TW |
| dc.subject | 化學洗滌 | zh_TW |
| dc.subject | 臭異味去除 | zh_TW |
| dc.subject | odor removal | en |
| dc.subject | Volatile organic compounds reduction | en |
| dc.subject | high-gravity rotating packed bed | en |
| dc.subject | trimethylamine | en |
| dc.subject | chemical scrubbing | en |
| dc.title | 利用旋轉填充床進行強化吸收法處理含三甲胺廢氣 | zh_TW |
| dc.title | Control of Emission Containing Trimethylamine by Enhanced Absorption Using a Rotating Packed Bed | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顧洋(Young Ku),陳奕宏(Yi-Hung Chen),潘述元(Shu-Yuan Pan) | |
| dc.subject.keyword | 揮發性有機物減量,超重力旋轉填充床,三甲胺,化學洗滌,臭異味去除, | zh_TW |
| dc.subject.keyword | Volatile organic compounds reduction,high-gravity rotating packed bed,trimethylamine,chemical scrubbing,odor removal, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU202100019 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0601202108045900.pdf 未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
