請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72790
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃心豪 | |
dc.contributor.author | Yi-Qing Zhao | en |
dc.contributor.author | 趙奕晴 | zh_TW |
dc.date.accessioned | 2021-06-17T07:06:16Z | - |
dc.date.available | 2024-08-22 | |
dc.date.copyright | 2019-08-22 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-25 | |
dc.identifier.citation | [5] 福海風力發電股份有限公司,福海離岸風力發電計畫(示範機組) 海岸利用管理說明書, 2016。
[6] 陳思翰, 樊庭宇, 朱棟樑, 黃金城, 本土化5MW離岸參考風機桁架式支撐結構之極限設計負載分析與強度檢核, 2017台灣風能協會會員大會暨學術研討會與科技部成果發表, 大葉大學, 彰化, 2017年12月1日。 [9] 廖柏凱, 大型貨櫃輪波振效應之探討,台灣大學工程科學及海洋工程學系碩士論文, 2014。 [13] 秦培江, 馬永亮, 韓超帥, 曲先強,海上風機支撑结構的頻域疲勞評估方法研究, 浙江大學學报, 哈爾濱工程大學船舶工程學院, 黑龍江哈爾濱, 2017。 [28] 樊庭宇, 林晉宇, 朱棟樑, 黃金城, OC4 5MW離岸參考風機JACKET 型式支撐結構疲勞分析, 2016台灣風能協會會員大會暨學術研討會, 海洋大學, 基隆, 2016年12月1日。 [1] Renewables energy policy network for the 21st century, Renewables 2018 global status, 2018. Available from: http://www.ren21.net/status-of-renewables/global-status-report-2/. (accessed January 28 2019). [2] Global wind energy council, Global wind power: 2017 market and outlook to 2022, 2017. Available from:http://cdn.pes.eu.com/v/20160826/wp-content/uploads/2018/06/PES-W-2-18-GWEC-PES-Essential-1.pdf. (accessed January 28 2019). [3] International renewable energy agency, Innovation outlook offshore wind, 2016. Available from:http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_Innovation_Outlook_Offshore_Wind_2016.pdf?la=en&hash=B6F4FD194D8BC61DE5CBB90E1009442E287F72DD. (accessed January 28 2019). [4] International Electrotechnical Commission, Wind turbines – Part 3: Design requirements for offshore wind turbines, International standard IEC 61400-3, 2009. [7] C. C. Ciang, J.-R. Lee, and H.-J. Bang, Structural health monitoring for a wind turbine system: a review of damage detection methods, Measurement science and technology, vol. 19, no. 12, p. 122001, 2008. [8] W. Dong, T. Moan, and Z. J. E. S. Gao, Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain, Engineering structures, vol. 33, no. 6, pp. 2002-2014, 2011. [10] B. Yeter and Y. Garbatov, Spectral fatigue assessment of an offshore wind turbine structure under wave and wind loading, Developments in maritime transportation and exploitation of sea resources, pp. 425-433, 2013. [11] Det Norske Veritas-Germanischer Lloyd, Recommended practice DNV-RP-C103: column-stabilized units, DNVGL-RP-C103, 2005. [12] P.-y. Zhao and X.-p. Huang, An improved spectral analysis method for fatigue damage assessment of details in liquid cargo tanks, China ocean engineering, vol. 32, no. 1, pp. 62-73, 2018. [14] Van Der Tempel, Jan, Design of support structures for offshore wind turbines, PhD Thesis, Technische universiteit delft, Netherlands, 2006. [15] H.-J. Kim, B.-S. Jang, C.-K. Park, and Y. H. Bae, Fatigue analysis of floating wind turbine support structure applying modified stress transfer function by artificial neural network, Ocean engineering, vol. 149, pp. 113-126, 2018. [16] B. Yeter and Y. Garbatov, Spectral fatigue assessment of an offshore wind turbine structure under wave and wind loading, Developments in maritime transportation and exploitation of sea resources, pp. 425-433, 2013. [17] B. Yeter, Y. Garbatov, and C. Guedes Soares, Fatigue damage assessment of fixed offshore wind turbine tripod support structures, Engineering structures, vol.101, pp.518-528, 2015. [18] Bendat, J. S., Probability functions for random responses: prediction of peaks, fatigue damage, and catastrophic failures, NASA technical report, 1964. [19] P. H. Wirsching and M. C. Light, Fatigue under wide band random stresses, Journal of the structural division, vol. 106, no. 7, pp. 1593–1607, 1980. [20] K. Ortiz, N.K. Chen, Fatigue damage prediction for stationary wideband processes, Proc. Fifth int. conf. on applications of statistics and probability in soil and struct. , Engrg. , 1987. [21] Benasciutti, D. and R. Tovo, Spectral methods for lifetime prediction under wide-band stationary random processes, International journal of fatigue, vol. 27, no. 8, pp. 867-877, 2005. [22] Turan Dirlik, Application of computers in fatigue analysis, PhD Thesis, University of warwick, England, 1985. [23] Zhao, W. and Baker, M. J., On the probability density function of rainflow stress range for stationary Gaussian processes. International journal of fatigue, vol. 14, no. 2, pp. 121-135, 1992. [24] Gao, Z. and Moan, T., Frequency-domain fatigue analysis of wide-band stationary Gaussian processes using a trimodal spectral formulation, International journal of fatigue, vol. 30, no. 10, pp. 1944-1955, 2008. [25] A. Niesłony and M. Böhm, Mean stress effect correction in frequency-domain methods for fatigue life assessment, Procedia engineering, vol. 101, pp. 347-354, 2015. [26] Det Norske Veritas-Germanischer Lloyd, Support structures for wind turbines, DNVGL-ST-0126, 2016. [27] I.-W. Chen, B.-L. Wong, Y.-H. Lin, S.-W. Chau, and H.-H. Huang, Design and analysis of jacket substructures for offshore wind turbines, Energies, vol. 9, no. 4, p. 264, 2016. [29] F. Vorpahl, W. Popko and D. Kaufer, Description of a basic model of the 'Upwind reference jacket” for code comparison in the OC4 project under IEA wind annex XXX, Fraunhofer institute for wind energy and energy system technology (IWES), Germany, 2011. [30] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, Definition of a 5-MW reference wind turbine for offshore system development, National renewable energy lab (NREL), Golden, CO (United States), 2009. [31] W. Shi, J. Han, C. Kim, D. Lee, H. Shin, and H. Park, Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea, Renewable energy, vol. 74, pp. 406-413, 2015. [32] International Electrotechnical Commission, Wind turbines - Part 1: Design requirements, International standard IEC 61400-1, 2005. [33] M. Efthymiou., Development of SCF formulae and generalised influence functions for use in fatigue analysis, Recent developments in tubular joint technology, OTJ'88, October 4 and 5, 1988, Surrey, UK, 1988. [34] Det Norske Veritas-Germanischer Lloyd, Fatigue design of offshore steel structures, DNVGL-RP-C203, 2016. [35] J. C. Paul, Y. Makino, and Y. Kurobane, Ultimate resistance of unstiffened multiplanar tubular TT-and KK-joints, Journal of structural engineering, vol. 120, pp. 2853-2870, 1994. [36] C.O. Woghiren, and F. P. Brennan, Weld toe stress concentrations in multi-planar stiffened tubular KK joints, International journal of fatigue, vol. 31, pp. 164-172, 2009. [37] Eldoǧan, Y., and Cigeroglu, E., Vibration fatigue analysis of a cantilever beam using different fatigue theories, Topics in modal analysis, vol. 7, Springer, New York, pp. 471-478, 2014. [38] M. Aykan, Vibration fatigue analysis of equipments used in aerospace, M.Sc. Thesis, Middle east technical university, Ankara, 2005. [39] Rice. Stephen O, Mathematical analysis of random noise, Bell system technical journal, vol. 24.1, pp. 46-156, 1954. [40] E. DURU, The design of an aluminium jam of noise barriers along (motor) ways, Eindhoven university of technology, 2016. [41] T. Irvine, Fatigue damage specrtum, time domain, 2013. Available from:https://vibrationdata.wordpress.com/2013/09/30/fatigue-damage-spectrum/. (accessed January 28 2019). [42] Bachynski, E. E., Kvittem, M. I., Luan, C., and Moan, T., Wind-wave misalignment effects on floating wind turbines: motions and tower load effects, Journal of offshore mechanics and arctic engineering, vol. 136, no. 4, 2014. [43] Vanem, E., Joint statistical models for significant wave height and wave period in a changing climate, Marine structures, vol. 49, pp. 180-205, 2016. [44] A. Niesłony, Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components, Mechanical systems and signal processing, vol. 23, pp. 2712-2721, 2009. [45] A. Niesłony, Rainflow counting algorithm, version 1.2, Available from : http://www.mathworks.com/matlabcentral/fileexchange/3026 (accessed April 4 2019). [46] M. Philippe, A. Babarit, and P. Ferrant, Comparison of time and frequency domain simulations of an offshore floating wind turbine, ASME 2011 30th international conference on ocean, Offshore and arctic engineering, American society of mechanical engineers, Rotterdam, the Netherlands, pp. 589-598, 2011. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72790 | - |
dc.description.abstract | 本研究以台灣福海風場水域為例應用OC4 5 MW套管式離岸風電進行時域與頻域疲勞分析,符合國際標準估算離岸風電運行二十年的疲勞損傷累積值。利用SACS軟體設置波浪環境的有義波高與與週期資訊,對結構進行動態響應分析,取出觀察接點的FA、IPB、OPB三種結構響應訊號考量應力集中係數後,將其應力訊號自相關後傅立葉轉換成功率頻譜密度函數,總能量以Dirlik method進行譜疲勞分析,搭配T-curve S-N曲線估算在離岸風電作用的二十年間的疲勞損傷值。本研究以台灣海峽海況環境為例,比較各種代表性海況的組合方式所受的損傷與真實情況共一百二十個環境狀況的損傷總合,探討是否能以少數的環境組合去近似真實情況。頻域疲勞分析因為線性系統的假設,使響應的能量譜相互疊加,相對於時域法即可大幅減少90 %的分析時長,本研究再提出利用代表性環境組合的方法,可大幅減少所需分析數量,推薦選用前九大出現機率海況(不考慮較低波高)的組合方式,只需原本花費時長的1/12,即可使損傷比例平均值達60.3 %,變異係數37.7 %。 | zh_TW |
dc.description.abstract | This paper is to perform frequency-domain analysis of the jacket support structure for OC4 5MW offshore wind turbine in Fuhai Offshore in 50m of water under Taiwan’s local environmental sea state, and estimate the cumulative fatigue damage values of 20 year lifetime. SACA software is employed to analyze the dynamic response at each significant wave height and time period of the wave environment. After extracting the FA, IPB, and OPB structures response of the observation joints and multiplying the stress concentration factors, we Fourier transform the autocorrelated strss signal into a power spectral density, then apply the spectral fatigue analysis by Dirlik method. Palmgren-Miner rule is employed to evaluate the fatigue life under the consideration of 20 year lifetime. This paper takes the sea conditions of the Taiwan Strait as an example, and compares the damage caused by the combination of various representative sea conditions with the actual damage of 120 environmental conditions, then explore whether it is possible to approximate the real situation with a less number of environmental combinations. Because of the assumption of the linear system, frequency domain fatigue analysis can be greatly reduced by 90% compared with the time domain method. This study proposes a method of using a representative environment combination, which can greatly reduce the analysis quantity, it is recommended to use the combination of the top nine probability sea conditions (not considering the lower wave height), only need to spend 1/12 of the original time, the average damage ratio can reach 60.3 %, and the coefficient of variation is 37.7 %. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:06:16Z (GMT). No. of bitstreams: 1 ntu-108-R06525023-1.pdf: 4774066 bytes, checksum: 5664865d8f95d819cbb2fd65b014a5f4 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 圖目錄 vi 表目錄 viii 附錄 圖目錄 x 附錄 表目錄 x 第1章 簡介 1 1.1 研究動機與背景 1 1.2 研究目的 3 1.3 重要性與貢獻 5 1.4 名詞對照與符號說明 6 1.4.1 英文專有名詞與中文翻譯對照 6 1.4.2 符號說明表 7 第2章 文獻回顧 10 2.1離岸風電疲勞 10 2.2頻域疲勞分析 13 2.3 疲勞分析的環境組合 19 第3章 方法 21 3.1 OC4 5 MW套管式離岸風電數值模型 23 3.1.1套管式支撐結構設計準則 25 3.1.2套管式離岸風電模態振型 26 3.2頻域疲勞分析 28 3.2.1 環境載荷 29 3.2.2應力集中係數 32 3.2.3 熱點應力 37 3.2.4功率譜密度函數 40 3.2.5 Dirlik method 41 3.2.6 S-N 曲線 45 3.2.7累積損傷 48 3.3 Dirlik method 與 RFC估算壽命之比較 49 3.4 分析工具簡介 52 3.4.1 Bladed 52 3.4.2 SACS 53 3.4.3 MATLAB程式語言 53 3.5風浪環境 54 第4章 結果 58 4.1 觀察點之最大受損連接桿件與位置 58 4.2 各海況環境之累積損傷值 60 4.3最大出現機率海況與實際海況之累積損傷值比較 63 4.3.1 實際海況之累積損傷值 63 4.3.2 最大出現機率海況的代表性探討 66 4.4 代表性海況與實際海況之累積損傷值比較 68 4.4.1 代表性海況之組合選擇 68 4.4.2 各環境組合與實際海況之累積損傷值比較 73 第5章 討論 83 5.1各環境組合的代表性探討 83 5.1.1 最大出現機率環境海況成果與效益 83 5.1.2 六個環境海況之組合成果與效益 84 5.1.3 九個環境海況之組合成果與效益 86 5.2最佳環境組合的代表性探討 90 第6章 結論與未來展望 94 6.1結論 94 6.2 未來展望 96 參考文獻 97 附錄 103 附錄1 時域疲勞分析 103 附1.1設計負載案例 103 附1.2環境風況推估與韋伯分佈 105 附1.3雨流計數法 106 附1.4 結構疲勞壽命 108 附錄2 實際海況疲勞累積損傷值列表 113 | |
dc.language.iso | zh-TW | |
dc.title | 應用於離岸風電套管式支撐結構頻域法疲勞分析之代表性環境的選擇 | zh_TW |
dc.title | The Recommendation of the Representative Environmental Condition in Spectral Fatigue Analysis of Jacket Substructures for Offshore Wind Turbines | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡進發,宋家驥,鍾承憲,黃金城 | |
dc.subject.keyword | 套管式離岸風電,頻域疲勞分析,應力集中係數,功率頻譜密度函數,Dirlik method,S-N曲線,代表性海況, | zh_TW |
dc.subject.keyword | Jacket-Type Offshore Wind Turbine,Frequency-Domain Fatigue Analysis,Stress Concentration Factor,Power Spectral Density,Dirlik Method,S-N Curve,Representative Environmental Condition, | en |
dc.relation.page | 122 | |
dc.identifier.doi | 10.6342/NTU201901896 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 4.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。