請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72745
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊?伸(Chii-Shen Yang) | |
dc.contributor.author | Cheng-Hong Tu | en |
dc.contributor.author | 杜承宏 | zh_TW |
dc.date.accessioned | 2021-06-17T07:05:05Z | - |
dc.date.available | 2024-08-05 | |
dc.date.copyright | 2019-08-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-26 | |
dc.identifier.citation | 1. Robertson, C.E., Harris, J.K., Spear, J.R. & Pace, N.R. Phylogenetic diversity and ecology of environmental Archaea. Current Opinion in Microbiology 8, 638-642 (2005).
2. Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology 6, 245-252 (2008). 3. Gaber S.H.Soliman, H.G.T. Halobacterium pharaonis sp. nov., a New, extremely haloalkaliphilic Archaebacterium with low magnesium requirement. Zbl. Bakt. Hyg., 1. Abt, Orig. C 3, 318-329 (1982). 4. Falb, M. et al. Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Research 15, 1336-1343 (2005). 5. Ernst, O.P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chemical Reviews 114, 126-163 (2014). 6. Govorunova, E.G., Sineshchekov, O.A., Li, H. & Spudich, J.L. Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annual Review of Biochemistry 86, 845-872 (2017). 7. Kandori, H. Ion-pumping microbial rhodopsins. Front Mol Biosci 2, 52 (2015). 8. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. Journal of molecular biology 213, 899-929 (1990). 9. Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P. & Lanyi, J.K. Structure of bacteriorhodopsin at 1.55 A resolution. Journal of molecular biology 291, 899-911 (1999). 10. Alexiev, U. & Farrens, D.L. Fluorescence spectroscopy of rhodopsins: insights and approaches. Biochimica et Biophysica Acta 1837, 694-709 (2014). 11. Wang, W. et al. Tuning the electronic absorption of protein-embedded all-trans-retinal. Science 338, 1340-1343 (2012). 12. Pal, R., Sekharan, S. & Batista, V.S. Spectral tuning in halorhodopsin: the chloride pump photoreceptor. Journal of the American Chemical Society 135, 9624-9627 (2013). 13. Hoffmann, M. et al. Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. Journal of the American Chemical Society 128, 10808-10818 (2006). 14. Kalisky, O., Feitelson, J. & Ottolenghi, M. Photochemistry and fluorescence of bacteriorhodopsin excited in its 280-nm absorption band. Biochemistry 20, 205-209 (1981). 15. Du-Jeon Jang, M.A.E.-S. Tryptophan fluorescence quenching as a monitor for the protein conformation changes occurring during the photocycle of bacteriorhodopsin under different perturbations. Proceedings of the National Academy of Sciences of the United States of America. USA 86, 5815-5819 (1989). 16. Yamazaki, Y. et al. Interaction of tryptophan-182 with the retinal 9-methyl group in the L intermediate of bacteriorhodopsin. Biochemistry 34, 577-582 (1995). 17. Weidlich, O. et al. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle. Biochemistry 35, 10807-10814 (1996). 18. Rothschild, K.J. et al. Vibrational spectroscopy of bacteriorhodopsin mutants: chromophore isomerization perturbs tryptophan-86. Biochemistry 28, 7052-7059 (1989). 19. 林宏軒 視黃醛結合袋中保守色胺酸點突變對兩種氫視紫質酸耐受性能力之不同影響. 台灣大學生化科技學系學位論文 (2017). 20. Chen, X.R., Huang, Y.C., Yi, H.P. & Yang, C.S. A unique light-driven proton transportation signal in halorhodopsin from Natronomonas pharaonis. Biophysical Journal 111, 2600-2607 (2016). 21. Matsuno-Yagi, A. & Mukohata, Y. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochemical and biophysical research communications 78, 237-243 (1977). 22. Engelhard, C., Chizhov, I., Siebert, F. & Engelhard, M. Microbial halorhodopsins: light-driven chloride pumps. Chemical Reviews 118, 10629-10645 (2018). 23. Kunji, E.R., von Gronau, S., Oesterhelt, D. & Henderson, R. The three-dimensional structure of halorhodopsin to 5 A by electron crystallography: A new unbending procedure for two-dimensional crystals by using a global reference structure. Proceedings of the National Academy of Sciences of the United States of America 97, 4637-4642 (2000). 24. Kolbe, M., Besir, H., Essen, L.O. & Oesterhelt, D. Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science 288, 1390-1396 (2000). 25. Kouyama, T. et al. Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. Journal of molecular biology 396, 564-579 (2010). 26. Braiman, M.S., Walter, T.J. & Briercheck, D.M. Infrared spectroscopic detection of light-induced change in chloride-arginine interaction in halorhodopsin. Biochemistry 33, 1629-1635 (1994). 27. Gruia, A.D., Bondar, A.N., Smith, J.C. & Fischer, S. Mechanism of a molecular valve in the halorhodopsin chloride pump. Structure 13, 617-627 (2005). 28. Otomo, J. Anion selectivity and pumping mechanism of halorhodopsin. Biophysical Chemistry 56, 137-141 (1995). 29. Lanyi, J.K. Halorhodopsin: a light-driven chloride ion pump. Annu Rev Biophys Biophysical Chemistry 15, 11-28 (1986). 30. Duschl, A., Lanyi, J.K. & Zimanyi, L. Properties and photochemistry of a halorhodopsin from the haloalkalophile, Natronobacterium pharaonis. The Journal of biological chemistry 265, 1261-1267 (1990). 31. Seki, A. et al. Heterologous expression of Pharaonis halorhodopsin in Xenopus laevis oocytes and electrophysiological characterization of its light-driven Cl- pump activity. Biophysical Journal 92, 2559-2569 (2007). 32. Sato, M. et al. Role of putative anion-binding sites in cytoplasmic and extracellular channels of Natronomonas pharaonis halorhodopsin. Biochemistry 44, 4775-4784 (2005). 33. Kubo, M. et al. Role of Arg123 in light-driven anion pump mechanisms of pharaonis halorhodopsin. Photochemistry and photobiology 85, 547-555 (2009). 34. Sato, M. et al. Roles of Ser130 and Thr126 in chloride binding and photocycle of pharaonis halorhodopsin. Journal of Biochemistry 134, 151-158 (2003). 35. Hasemi, T. et al. Photochemical study of a cyanobacterial chloride-ion pumping rhodopsin. Biochimica et Biophysica Acta Bioenergetics 1860, 136-146 (2019). 36. Yen, C.W., Chu, L.K. & El-Sayed, M.A. Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle. J Am Chem Soc 132, 7250-7251 (2010). 37. Chu, L.K., Yen, C.W. & El-Sayed, M.A. Bacteriorhodopsin-based photo-electrochemical cell. Biosensors and Bioelectronics 26, 620-626 (2010). 38. 黃元祈 透過光電化學測試揭露在不同氯視紫紅質間之氯離子-協助氫離子流動機制的差異. 台灣大學生化科技學系學位論文 (2016). 39. Varo, G. Analogies between halorhodopsin and bacteriorhodopsin. Biochimica et Biophysica Acta 1460, 220-229 (2000). 40. Zimanyi, L. et al. Pathways of proton release in the bacteriorhodopsin photocycle. Biochemistry 31, 8535-8543 (1992). 41. Kuo, C.L. & Chu, L.K. Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: a case of bacteriorhodopsin. Bioelectrochemistry 99, 1-7 (2014). 42. Method of the Year 2010. Nature methods 8, 1-1 (2010). 43. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America 100, 13940-13945 (2003). 44. Gradinaru, V., Thompson, K.R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biology 36, 129-139 (2008). 45. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025-1029 (2009). 46. Iseki, M. et al. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415, 1047-1051 (2002). 47. Han, X. & Boyden, E.S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PloS one 2 (2007). 48. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154-165 (2010). 49. Okuno, D., Asaumi, M. & Muneyuki, E. Chloride concentration dependency of the electrogenic activity of halorhodopsin. Biochemistry 38, 5422-5429 (1999). 50. 陳筱儒 鹽方扁平古菌上氯視紫質蛋白質光驅動離子傳遞能力之探討. 台灣大學生化科技學系學位論文 (2015). 51. Der, A., Hargittai, P. & Simon, J. Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel. Journal of Biochemical and Biophysical Methods 10, 295-300 (1985). 52. Koyama, K., Sumi, M., Kamo, N. & Lanyi, J.K. Photoelectric response of halorhodopsin from Natronobacterium pharaonis. Bioelectrochemistry and Bioenergetics 46, 289-292 (1998). 53. Hasegawa, C. et al. Interaction of the halobacterial transducer to a halorhodopsin mutant engineered so as to bind the transducer: Cl circulation within the extracellular channel. Photochemistry and photobiology 83, 293-302 (2007). 54. Kikukawa, T., Kamo, N. & Demura, M. in Optogenetics: light-sensing proteins and their applications. (eds. H. Yawo, H. Kandori & A. Koizumi) 47-62 (Springer Japan, Tokyo; 2015). 55. Scharf, B. & Engelhard, M. Blue halorhodopsin from Natronobacterium pharaonis: wavelength regulation by anions. Biochemistry 33, 6387-6393 (1994). 56. Kouyama, T., Kawaguchi, H., Nakanishi, T., Kubo, H. & Murakami, M. Crystal structures of the L1, L2, N, and O states of pharaonis halorhodopsin. Biophysical Journal 108, 2680-2690 (2015). 57. Schobert, B. & Lanyi, J.K. Halorhodopsin is a light-driven chloride pump. The Journal of biological chemistry 257, 10306-10313 (1982). 58. White, A. Effect of pH on fluorescence of Tyrosine, Tryptophan and Related Compounds. Biochemical Journey 71, 217-220 (1958). 59. Chizhov, I. & Engelhard, M. Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophysical Journal 81, 1600-1612 (2001). 60. Feroz, H. et al. Light-driven chloride transport kinetics of halorhodopsin. Biophysical Journal 115, 353-360 (2018). 61. Pfisterer, C., Gruia, A. & Fischer, S. The mechanism of photo-energy storage in the halorhodopsin chloride pump. The Journal of biological chemistry 284, 13562-13569 (2009). 62. Klapper, S.D., Swiersy, A., Bamberg, E. & Busskamp, V. Biophysical properties of optogenetic tools and their application for vision restoration approaches. Front in Systems Neuroscience 10, 74 (2016). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72745 | - |
dc.description.abstract | Natronomonas pharaonis 是一種嗜鹽古生菌,最早被分離於埃及鹼湖 (soda lake),生活於pH=11的極端鹼性環境中,擁有兩種菌式視紫質 (microbial rhodopsin):氯視紫質 (halorhodopsin)與感受型視紫質第二型 (sensory rhodopsin II),其中氯視紫質已知是一種光驅動氯離子幫浦,可吸收光能並將氯離子運輸至胞內,以維持古生菌的細胞滲透壓。近年來在光遺傳學 (optogenetics)有廣泛的應用,可使神經細胞過極化抑制神經傳遞,亦可恢復受損的視覺。本實驗室先前發現,來自N. pharaonis的氯視紫質 (NpHR)可量測到獨特的氫離子訊號,因此進行了氯離子結合位附近重要胺基酸的點突變,發現無法傳遞氯離子的R123A、S130A、D252N等點突變蛋白質皆無法測得氫離子訊號,證明氫離子訊號與氯離子的運輸有緊密的關聯。本研究對此做更深入的分析,提出了胞內側氫離子循環的模型。氯視紫質受光激發之後會進行一連串的構型改變,稱之為光週期 (photocycle):即HR→K→L→N→O→HR,先前的X光晶體繞射研究指出,在N state時穿膜區F與穿膜區C會構成胞內側水分子通道,由於該通道由非帶電胺基酸所組成,故氫離子可能協助帶負電的氯離子通過此疏水性通道,然而卻尚未有直接測量氫離子的實驗證實。本研究利用光化學電流裝置解開NpHR獨特的氫離子運輸機制,針對野生型WT-NpHR的實驗結果,證實胞內側氫離子循環的模型。接著更進一步針對氯視紫質的視黃醛結合袋 (retinal binding pocket)附近三個保守性色胺酸(tryptophan)設計點突變,發現靠近氯離子結合位的W127突變後無法測得氫離子訊號,且W229能協助視黃醛吸收紫外線波段,並加速光週期速率。研究的結論是NpHR中色胺酸在離子運輸與光能量傳遞上有關鍵的重要性,並提出氫離子結合位的可能模型。 | zh_TW |
dc.description.abstract | Natronomonas pharaonis belongs to the order of Halobacteriales, and was first isolated from soda lakes. To survive, N. pharaonis has to cope with extreme conditions of high salt and an alkaline pH of 11. In its two microbial rhodopsins, halorhodopsin (NpHR) functions as light-driven inward chloride pump, and NpSRII serves as light-sensing photophobic responsor. Halorhodopsin is believed to maintain osmolarity and generate PMF and it is also widely used in the field of optogenetics to silence nerve activity. Previous mutagenesis study showed a unique proton releasing signal closely related to chloride transport. In that study, a model of intracellular-side proton circulation was proposed. Among the photocycle of NpHR: HR→K→L→N→O→HR, the N state forms an intracellular water channel by its transmembrane helix F and C to facilitate chloride release. Since the water channel was composed of non-charged residues, it is postulated that a proton should facilitate the release of chloride ion in the form of HCl. However it lacks direct experimental proof. In this study, we first demonstrate detailed analysis about the unique proton signal of wild type NpHR under different environment, verifying the intracellular proton circulation model. On the other hand, we are also interested in how tryptophans in the retinal binding pocket help retinal re-isomerize. By mutagenesis study, we distinguished W127 in NpHR is one of the critical residues for proton signal, and thus propose a proton binding site model in the water cluster next to chloride binding site. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:05:05Z (GMT). No. of bitstreams: 1 ntu-108-R06b22011-1.pdf: 6590749 bytes, checksum: cc217dc5f20a00296a8fd42dea53a879 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
摘要 i ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 第一節 嗜鹽古菌 1 1.1.1 法老嗜鹽鹼單胞菌 1 第二節 微生物視紫質 2 1.2.1 視黃醛結合袋與螢光 4 1.2.2 離子運輸機制 7 第三節 氯視紫質 8 1.3.1 蛋白質結構 8 1.3.2 離子傳遞機制與光週期 9 1.3.3 功能性測試與離子選擇性 9 1.3.4 獨特的氫離子訊號 10 1.3.5 氯視紫質與氫視紫質之比較 11 1.3.6 光遺傳學之應用 12 第四節 研究動機與目的 13 第二章 材料與方法 14 第一節 實驗材料與藥品 14 2.1.1 菌種 14 2.1.2 質體 14 2.1.3 藥品 14 第二節 實驗儀器與設備 16 2.2.1 核酸電泳設備 16 2.2.2 蛋白質電泳與轉印設備 16 2.2.3 離心機 16 2.2.4 全細胞離子運輸量測儀器 16 2.2.5 光化學電流量測儀器 16 2.2.6 光週期量測儀器 16 2.2.7 其他 17 第三節 實驗方法 17 2.3.1 生物資訊分析 17 2.3.2 NpHR點突變之建構 17 2.3.3 以大腸桿菌異源表達NpHR及其點突變 18 2.3.4 蛋白質電泳與西方墨點法分析 19 2.3.5 蛋白質功能性分析 20 第三章 結果與討論 23 第一節 NpHR之氫離子訊號符合胞內循環假說 23 3.1.1 NpHR的氫離子訊號來自胞內側 23 3.1.2 NpHR的氫離子訊號受氯離子濃度影響 25 3.1.3 NpHR的氫離子訊號隨著pH值降低而消失 26 第二節 NpHR保守色胺酸點突變對離子運輸之影響 28 3.2.1 NpHR保守色胺酸點突變建構 28 3.2.2 NpHR點突變之吸收光譜與氯離子解離常數 29 3.2.3 NpHR點突變之光週期分析 33 3.2.4 NpHR點突變之功能性分析 35 3.2.5 NpHR點突變同時偵測光電流與光週期 37 3.2.6 氯視紫質與氫視紫質保守色胺酸之功能比較 38 第四章 結論與探討 39 第一節 NpHR氫離子訊號之分子機制 39 第二節 視黃醛結合袋中色胺酸扮演的角色 41 第五章 未來展望 43 參考文獻 44 附錄 48 第一節 輔助實驗結果 48 第二節 NpHR中色胺酸能協助吸收280nm 52 5.2.1 以螢光探討NpHR中色胺酸與視黃醛的交互作用 52 5.2.2 色胺酸吸收光對NpHR光週期的影響 56 5.2.3 NpHR色胺酸點突變之光週期受280nm的影響 58 第三節 期刊文章 59 | |
dc.language.iso | zh-TW | |
dc.title | 揭露法老嗜鹽鹼單胞菌氯視紫質中與氯離子相關之獨特光驅動質子運輸機制 | zh_TW |
dc.title | Elucidate the molecular mechanism of light driven chloride pumping-related unique proton signal in halorhodopsin from Natronomonas pharaonis | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 梁博煌(Po-Huang Liang),吳韋訥(Wailap Victor Ng),李昆達(Kung-Ta Lee),吳?承(Hsuan-Chen Wu) | |
dc.subject.keyword | 嗜鹽古生菌,氯視紫質,光週期,光化學電流,點突變, | zh_TW |
dc.subject.keyword | halobacteria,halorhodopsin,photocycle,photocurrent,mutagenesis, | en |
dc.relation.page | 72 | |
dc.identifier.doi | 10.6342/NTU201901995 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-26 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 6.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。