請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72731完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 唐牧群 | |
| dc.contributor.author | Yi-Rou Lai | en |
| dc.contributor.author | 賴依柔 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:04:43Z | - |
| dc.date.available | 2028-12-31 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-27 | |
| dc.identifier.citation | 丁培涵(2011)。網路書櫃使用者偏好結構與瀏覽尋書行為之研究(未出版之碩士論文)。國立臺灣大學,臺北市。
吳明隆(2011)SPSS統計應用學習實務:問卷分析與應用統計。新北市:易習圖書。 林珊如(2002)。網路使用者特性與資訊行為研究趨勢之探討。Information Studies,(17),35–47。 林珊如、劉應琳(2001)。休閒閱讀找書策略與影響因素之探討:以台大BBS Books 版愛書人為例。資訊傳播與圖書館學,8(2),23-37。 唐牧群、謝伊柔(2016)。社會導覽工具評估之研究:以亞馬遜網路書店為例。圖書資訊學研究,10(2),181-228。 張媺媺(2015)。電影偏好結構多樣性及開放性之量表建立與驗證(未出版之碩士論文)。國立臺灣大學,臺北市。 陳新豐(2015)。量化資料分析:SPSS與EXCEL。台北市:五南。 陳寬裕、王正華(2010)。論文統計分析實務:SPSS與AMOS的運用。臺北: 五南圖書。 Apted, S. M. (1971). General purposive browsing. Library Association Record, 73(12), 228-230. Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173. Bates, M. J. (1989). The design of browsing and berrypicking techniques for the online search interface. Online review, 13(5), 407–424. Björneborn, L. (2008). Serendipity dimensions and users’ information behaviour in the physical library interface. Information Research, 13(4), 13–4. Bouman, W., de Bruin, B., Hoogenboom, T., Huizing, A., Jansen, R., & Schoondorp, M. (2007). The realm of sociality: Notes on the design of social software. ICIS 2007 Proceedings, 154. Case, D.O. (2012). Looking for information: a survey of research on information seeking, needs and behavior. (3rd. ed.). Bingley, UK: Emerald Group Publishing. Castells, P., Vargas, S., & Wang, J. (2011). Novelty and diversity metrics for recommender systems: choice, discovery and relevance. In International Workshop on Diversity in Document Retrieval(DDR 2011) at the 33rd European Conference on Information Retrieval(ECIR 2011) (pp. 29-36). Dublin, Ireland. Caves, R. E. (2000). Creative industries: Contracts between art and commerce. Harvard University Press. Celma, Ò., & Herrera, P. (2008). A new approach to evaluating novel recommendations. In Proceedings of the 2008 ACM conference on Recommender systems (pp. 179-186). ACM. Chang, S. J. L. (1995). Toward a Multidimensional Framework for Understand Browsing. Rutgers University of New Jersey, New Brunswick. Chang, Y. H., & Tang, M. C. (2018, March). Serendipity with Music Streaming Services: The Mediating Role of User and Task Characteristics. In International Conference on Information (pp. 435-441). Springer, Cham. Di Noia, T., Ostuni, V. C., Rosati, J., Tomeo, P., & Di Sciascio, E. (2014). An analysis of users' propensity toward diversity in recommendations. In Proceedings of the 8th ACM Conference on Recommender systems (pp. 285-288). ACM. Dieberger, A., Dourish, P., Höök, K., Resnick, P., & Wexelblat, A. (2000). Social navigation: techniques for building more usable systems. interactions, 7(6), 36–45. Egan, D. E., Remde, J. R., Gomez, L. M., Landauer, T. K., Eberhardt, J., & Lochbaum, C. C. (1989). Formative design evaluation of superbook. ACM Transactions on Information Systems (TOIS), 7(1), 30–57. Erdelez, S. (1997). Information encountering: a conceptual framework for accidental information discovery. In Proceedings of an international conference on Information seeking in context (pp. 412-421). Taylor Graham Publishing. Felfernig, A., Friedrich, G., Jannach, D., & Zanker, M. (2011). Developing constraint-based recommenders. In Recommender systems handbook (pp. 187-215). Springer, Boston, MA. Franke, N., Keinz, P., & Steger, C. J. (2009). Testing the value of customization: when do customers really prefer products tailored to their preferences? Journal of Marketing, 73(5), 103–121. Ge, M., Delgado-Battenfeld, C., & Jannach, D. (2010, September). Beyond accuracy: evaluating recommender systems by coverage and serendipity. In Proceedings of the fourth ACM conference on Recommender systems (pp. 257-260). ACM. Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5–53. Hill, W. C., Hollan, J. D., Wroblewski, D., & Mccandless, T. (1992). Edit wear and read wear. P. Bauersfeld, J. Bennett, & G. Lynch (Eds.), SIGCHI conference on Human Factors in computing systems (pp. 3-9). Monterey, California: ACM Huang, Z., Chung, W., Ong, T. H., & Chen, H. (2002, July). A graph-based recommender system for digital library. In Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries (pp. 65-73). ACM. Hurley, N., & Zhang, M. (2011). Novelty and diversity in top-N recommendation--analysis and evaluation. ACM Transactions on Internet Technology(TOIT), 10(4), 14. Kleinbanum, D. G., Kupper, L. L. & Muller, K. E. (1998). Applied regression analysis and other multivariable methods. 2th ed., North Scituate, MA:Duxbury Press Konstan, J. A., & Riedl, J. (2012). Recommender systems: from algorithms to user experience. User modeling and user-adapted interaction, 22(1-2), 101-123. Koolen, M., Kamps, J., & Kazai, G. (2012, October). Social book search: comparing topical relevance judgements and book suggestions for evaluation. In Proceedings of the 21st ACM international conference on Information and knowledge management (pp. 185-194). ACM. Kotler, P. (1994). Marketing management: analysis planning implementation and control. Englewood Cliffs: N.J.: Prentice-Hall. Kwon, K., Cho, J., & Park, Y. (2009). Influences of customer preference development on the effectiveness of recommendation strategies. Electronic Commerce Research and Applications, 8(5), 263–275. Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 7(1), 76–80. Makri, S., Blandford, A., Woods, M., Sharples, S., & Maxwell, D. (2014). “Making my own luck”: Serendipity strategies and how to support them in digital information environments. Journal of the Association for Information Science and Technology, 65(11), 2179-2194. Marchionini, G. (1997). Information seeking in electronic environments. Cambridge university press. McCay-Peet, L., & Toms, E. (2011). Measuring the dimensions of serendipity in digital environments. Information Research: An International Electronic Journal, 16(3). McNee, S. M., Riedl, J., & Konstan, J. A. (2006, April). Being accurate is not enough: how accuracy metrics have hurt recommender systems. In CHI'06 extended abstracts on Human factors in computing systems (pp. 1097-1101). ACM. Neelamegham, R., & Jain, D. (1999). Consumer choice process for experience goods: An econometric model and analysis. Journal of marketing research, 373–386. Oku, K., & Hattori, F. (2011). Fusion-based Recommender System for Improving Serendipity. DiveRS@ RecSys, 816, 19-26. Panda, T. K. (2009). Marketing management: Text and cases Indian context. Excel Books India. Pejterson, A. M., & Austin, J. (1983). Fiction Retrieval: Experimental Design and Evaluation of a Search System Based on Users' Value Criteria (Part 1). Journal of Documentation, 39(4), 230-246. Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002, January). Getting to know you: learning new user preferences in recommender systems. In Proceedings of the 7th international conference on Intelligent user interfaces (pp. 127-134). ACM. Rice, R. E., McCreadie, M., & Chang, S. J. L. (2001). Accessing and browsing information and communication. Mit Press. Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In Recommender systems handbook(pp. 257-297). Springer, Boston, MA. Simonson, I. (2005). Determinants of customers’ responses to customized offers: Conceptual framework and research propositions. Journal of Marketing, 69(1), 32–45. Sokvitne, L. O. (2006). Redesigning the OPAC: moving outside the ILMS. Australian Academic & Research Libraries, 37(4), 246–259. Tang, M. C., Chang, M. M., & Lin, S. C. (2018). The development and validation of “preference diversity” and “openness to novelty” scales for movie goers. Proceedings of the Association for Information Science and Technology, 55(1), 486-493. Tang, M. C., Ke, Y. L., & Sie, Y. J. (2013). The Estimation of aNobii Users’ Reading Diversity Using Book Co-ownership Data: A Social Analytical Approach. In International Conference on Social Informatics (pp. 274-283). Springer, Cham. Tang, M. C., Sie, Y. J., & Ting, P. H. (2014). Evaluating books finding tools on social media: A case study of aNobii. Information Processing & Management, 50(1), 54-68. Taylor, R. S. (1962). The process of asking questions. American documentation, 13(4), 391–396. Todd, P., & Benbasat, I. (2000). Inducing compensatory information processing through decision aids that facilitate effort reduction: An experimental assessment. Journal of Behavioral Decision Making, 13(1), 91. Xu, Y. (2007). Relevance judgment in epistemic and hedonic information searches. Journal of the American Society for Information Science and Technology, 58(2), 179–189. Zerbinos, E. (1990). Information seeking and information processing: Newspapers versus videotext. Journalism & Mass Communication Quarterly, 67(4), 920–929. Zhang, M., & Hurley, N. (2008). Avoiding monotony: improving the diversity of recommendation lists. In Proceedings of the 2008 ACM conference on Recommender systems (pp. 123-130). ACM. Zhang, Y. C., Séaghdha, D. Ó., Quercia, D., & Jambor, T. (2012, February). Auralist: introducing serendipity into music recommendation. In Proceedings of the fifth ACM international conference on Web search and data mining (pp. 13-22). ACM. Zhou, T., Ren, J., Medo, M., & Zhang, Y.-C. (2007). Bipartite network projection and personal recommendation. Physical Review E, 76(4), 046115. Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, May). Improving recommendation lists through topic diversification. In Proceedings of the 14th international conference on World Wide Web (pp. 22-32). ACM. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72731 | - |
| dc.description.abstract | 系統評估僅採準確性單一指標,所得到的結果並無法完整呈現使用者在瀏覽尋書時的表現。因此,本研究期望藉由多元化的評估方式,探討網路書店不同尋書導覽工具之尋書效能,使尋書系統能更貼近使用者尋書需求。本研究以博客來網路書店為研究平台,透過實驗法比較主題導覽工具與社會性導覽工具,以「尋書效率」、「尋書體驗」與「所選書籍結果」作為評估面向,並採用新穎性與意外發現等不同於傳統準確性的評估指標,以瞭解尋書工具的探索性功能。此外,本研究亦探討閱讀偏好屬性的調節作用,包括「偏好多樣性」、「偏好開放性」、「偏好涉入程度」和「偏好察覺程度」對尋書效能的影響。
本研究將52名受測者使用兩種導覽工具尋找小說與非小說的結果進行分析,研究發現:一、尋書效率方面,使用者運用社會性導覽工具點選的書籍數量較多,顯示社會性導覽工具推薦使用者更多納入考慮的書籍。二、尋書體驗方面,使用者在未來使用意願上較偏好使用社會性導覽工具。三、所選書籍結果方面,使用者對社會性導覽工具所推薦的小說在信心程度上評分較高,在新奇性與意外發現上則給予較低的評分。主要是因為研究平台博客來網路書店容易推薦暢銷書,使得社會性導覽工具尋找小說的決策信心較高,而新穎性和意外發現較少。四、不同文類的確會影響尋書工具的表現,由於小說沒有明確主題較難分類,故社會性導覽工具尋找小說的信心程度較主題導覽工具高。五、讀者的偏好屬性確實會影響尋書工具之尋書結果,閱讀多樣性越高者對社會性導覽工具尋找非小說的信心程度越高,顯示社會性導覽工具推薦小眾書籍因而滿足多樣性高之讀者。因此,未來尋書工具應考量讀者的閱讀偏好屬性,推薦符合其需求的書籍,並強化新穎性與意外發現之探索功能。 | zh_TW |
| dc.description.abstract | A study was conducted to compare the book finding performance between social (i.e. customers who bought this also bought) vs. subject based navigation on books.com.tw. To fully capture the effectiveness of the exploratory-based book finding tools, three aspects of evaluation were proposed, namely, user experience, search precision, and the quality of the search result. Furthermore, besides traditional accuracy-based criteria, search novelty and serendipity were also introduced in response to recent calls for “non-obviousness” measure that better reflect consumer value when interacting with recommender system. A Latin square experiment was adopted where 52 participants searched fictional vs. non-fictional books alternatively with two book finding tools. Another object of the study was to test the moderating role of users’ preference characteristics, including “preference diversity”, “openness to novelty,” “involvement” and “preference insight” on search performance.
It was found that social navigational tool produced a large consideration set, which was also preferred for future use. Though the social navigation tool generated less novelty and serendipity but higher decision confidence when searching for fictions, mainly because the current algorithm on books.com.tw tend to bring up popular sellers. Furthermore, the social navigational tool is particularly effective in terms of judgment confidence for users with high preference diversity searching for non-fictions, indicating that the social navigation tool was able to bring up more diverse results in non-fictional books. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:04:43Z (GMT). No. of bitstreams: 1 ntu-108-R03126011-1.pdf: 5074828 bytes, checksum: 1bd500eda2bae4c5a7745026ec76a484 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目次 v 表目次 vii 圖目次 ix 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的與問題 3 第三節 名詞解釋 5 第二章 文獻回顧 7 第一節 尋書行為 7 第二節 社會性導覽工具 9 第三節 推薦系統評估 13 第四節 偏好屬性與推薦機制 17 第五節 資訊偶遇與意外發現 19 第三章 研究設計與實施 21 第一節 研究模型 21 第二節 研究工具 24 第三節 研究對象 28 第四節 實驗流程 28 第五節 資料搜集與分析 31 第四章 研究結果與討論 36 第一節 受測者背景資料分析 36 第二節 閱讀偏好屬性與意外發現程度量表分析 39 第三節 尋書效能評估指標之間相關性 50 第四節 導覽工具與文類之尋書效能 52 第五節 閱讀偏好屬性對導覽工具在尋書表現之影響 65 第六節 綜合討論 70 第五章 結論與建議 76 第一節 結論 76 第二節 研究限制與未來研究建議 81 參考文獻 83 附錄一、網路書店導覽工具研究同意書 92 附錄二、實驗流程圖 93 附錄三、實驗前問卷:受測者背景資料問卷 94 附錄四、閱讀偏好屬性之問卷 96 附錄五、意外發現體驗之問卷 98 附錄六、使用體驗問卷 99 附錄七:所選書籍問卷 100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 社會性導覽工具 | zh_TW |
| dc.subject | 偏好察覺性 | zh_TW |
| dc.subject | 偏好開放性 | zh_TW |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 系統評估 | zh_TW |
| dc.subject | 偏好涉入程度 | zh_TW |
| dc.subject | 偏好多樣性 | zh_TW |
| dc.subject | involvement | en |
| dc.subject | system evaluation | en |
| dc.subject | recommendation system | en |
| dc.subject | social navigational tools | en |
| dc.subject | preference diversity | en |
| dc.subject | openness to novelty | en |
| dc.subject | preference insight | en |
| dc.title | 評估網路書店尋書工具與閱讀偏好屬性對尋書效能之影響 | zh_TW |
| dc.title | Exploring the impact of different book finding tools on effectiveness of recommendation accuracy and novelty | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林頌堅(scl@mail.shu.edu.tw),蔡天怡(titsai@ntu.edu.tw) | |
| dc.subject.keyword | 系統評估,推薦系統,社會性導覽工具,偏好多樣性,偏好涉入程度,偏好開放性,偏好察覺性, | zh_TW |
| dc.subject.keyword | system evaluation,recommendation system,social navigational tools,preference diversity,openness to novelty,involvement,preference insight, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201901889 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-29 | |
| dc.contributor.author-college | 文學院 | zh_TW |
| dc.contributor.author-dept | 圖書資訊學研究所 | zh_TW |
| 顯示於系所單位: | 圖書資訊學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
