請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7272
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李培芬 | |
dc.contributor.author | Wei-Wei Peng | en |
dc.contributor.author | 彭維維 | zh_TW |
dc.date.accessioned | 2021-05-19T17:40:50Z | - |
dc.date.available | 2029-06-27 | |
dc.date.available | 2021-05-19T17:40:50Z | - |
dc.date.copyright | 2019-08-18 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-30 | |
dc.identifier.citation | 李文玉。2011。八色鳥(Pitta nympha)潛在繁殖地與度冬地分布預測。碩士論文。臺灣大學。臺北。
林瑞興。2005。臺灣低海拔地區八色鳥分布及巨觀棲地分析。水利署中區水資源局,臺中。 林瑞興。2008。八色鳥的雛鳥食性、巢位選擇及繁殖成功率。博士論文。國立台灣大學。臺北。 林瑞興。2017。湖山水庫及斗六丘陵以外地區八色鳥族群數量調查。特有生物研究保育中心。南投。 許皓捷、吳采諭。2017。以物種分布模型推估生物多樣性熱點─評「臺灣生物多樣性熱點之推估:以台灣特有鳥種為例」。台灣生物多樣性研究 19: 255-270。 Araújo, M. B., R. G. Pearson, W. Thuiller, and M. Erhard. 2005. Validation of species–climate impact models under climate change. Global Change Biology 11:1504-1513. Araújo, M. B., and M. New. 2007. Ensemble forecasting of species distributions. Trends in ecology & evolution 22:42-47. Bowen, G. J., L. I. Wassenaar, and K. A. Hobson. 2005. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337-348. Bentivoglio, D., A. Finco, and G. Bucci. 2018. Factors affecting the indonesian palm oil market in food and fuel industry: Evidence from a time series analysis. International Journal of Energy Economics and Policy 8:49-57. Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37-46. Cuadrado, M. 1992. Year to year recurrence and site‐fidelity of blackcaps sylvia atricapilla and robins erithacus rubecula in a mediterranean wintering area. Ringing & Migration 13:36-42. Crossman, N. D., and D. A. Bass. 2008. Application of common predictive habitat techniques for post‐border weed risk management. Diversity and Distributions 14:213-224. Collar, N. J., A. Andreev, S. Chan, M. Crosby, S. Subramanya, and J. Tobias. 2001. Threatened birds of Asia: the BirdLife International red data book. Birdlife International, Cambridge (RU). del Hoyo, J., A. Elliott, and J. Sargatal. 2003. Handbook of the Birds of the World: Broadbills to Tapaculos. Buteo Books. Dunn, P. O., and D. W. Winkler. 2010. Effects of climate change on timing of breeding and reproductive success in birds. Effects of climate change on birds:113-128. Erritzoe, J., and H. Erritzoe. 1998. Pittas of the World; a monograph of the Pitta family: 1-207. Cambridge, UK. G, S., C. P. Johnson, D. J. Pal, and B. Kakade. 2000. Effect of watershed development programme in Gudha Gokalpura village, Bundi district, Rajasthan - A remote sensing study. Gaveau, D. L., D. Sheil, M. A. Salim, S. Arjasakusuma, M. Ancrenaz, P. Pacheco, and E. Meijaard. 2016. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Scientific reports 6:32017. Gaveau, D. L., B. Locatelli, M. A. Salim, H. Yaen, P. Pacheco, and D. Sheil. 2019. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conservation Letters 12:e12622. Hirzel, A. H., J. Hausser, D. Chessel, and N. Perrin. 2002. Ecological‐niche factor analysis: how to compute habitat‐suitability maps without absence data? Ecology 83:2027-2036. Jaynes, E. T. 1957. Information theory and statistical mechanics. Physical review 106:620. Landis, J. R., and G. G. Koch. 1977. The measurement of observer agreement for categorical data. biometrics:159-174. Lambert, F. and M. Woodcock. 1996. Pittas, Broadbills and Asities. Pica Press, East Sussex, UK. Laliberte, A., A. Rango, J. Herrick, E. L. Fredrickson, and L. Burkett. 2007. An object-based image analysis approach for determining fractional cover of senescent and green vegetation with digital plot photography. Journal of Arid Environments 69:1-14. Martínez, I., F. Carreño, A. Escudero, and A. Rubio. 2006. Are threatened lichen species well-protected in Spain? Effectiveness of a protected areas network. Biological Conservation 133:500-511. Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen, and W. Thuiller. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15:59-69. Meller, K. 2016. The impacts of temperature on the long-term variation in migration and breeding performance of birds. Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37. Phillips, S. J., M. Dudík, and R. E. Schapire. 2004. A maximum entropy approach to species distribution modeling. Page 83 in Proceedings of the twenty-first international conference on Machine learning. ACM. Pjillips. S. J. et al. 2005. Maxent software for species habitat modeling. URL: http://www.cs.princeton.edu/~schapire/maxent/. Phillips, S. J., R. P. Anderson and R. E. Schapire. 2006. Maximum entropy modeling of Species geographic distributions. Ecological modelling, 190, 231-259. Phillips, S. J., and M. Dudík. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161-175. Pomeroy, A. C., R. W. Butler, and R. C. Ydenberg. 2006. Experimental evidence that migrants adjust usage at a stopover site to trade off food and danger. Behavioral Ecology 17:1041-1045. Pearson, R. G., C. J. Raxworthy, M. Nakamura, and A. Townsend Peterson. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of biogeography 34:102-117. Perreault, N., E. Lévesque, D. Fortier, D. Gratton, and L. J. Lamarque. 2017. Remote sensing evaluation of High Arctic wetland depletion following permafrost disturbance by thermo-erosion gullying processes. Arctic Science 3:237-253. Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240:1285-1293. Stockwell, D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International journal of geographical information science 13:143-158. Stockwell, D. R., and A. T. Peterson. 2002. Effects of sample size on accuracy of species distribution models. Ecological modelling 148:1-13. Sobrino, J., and N. Raissouni. 2000. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. International journal of remote sensing 21:353-366. Sobrino, J. A., J. C. Jimenez-Munoz, and L. Paolini. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment 90:434-440. Santos, X., J. C. Brito, N. Sillero, J. M. Pleguezuelos, G. A. Llorente, S. Fahd, and X. Parellada. 2006. Inferring habitat-suitability areas with ecological modelling techniques and GIS: a contribution to assess the conservation status of Vipera latastei. Biological Conservation 130:416-425. Shalaby, A., and R. Tateishi. 2007. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography 27:28-41. Sattler, T., F. Bontadina, A. H. Hirzel, and R. Arlettaz. 2007. Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status. Journal of Applied Ecology 44:1188-1199. Lillesand, T., R. W. Kiefer, and J. Chipman. 2015. Remote sensing and image interpretation. John Wiley & Sons. USDA, N. 2017. Global Oilseed Consumption Continues to Grow Despite Slowing Trade and Production. Oilseed: World Markets and Trade. United States Department of Agriculture, Washington, DC. Wennerberg, L. 2001. Breeding origin and migration pattern of dunlin (Calidris alpina) revealed by mitochondrial DNA analysis. Molecular Ecology 10:1111-1120. Webster, M. S., P. P. Marra, S. M. Haig, S. Bensch, and R. T. Holmes. 2002. Links between worlds: unraveling migratory connectivity. Trends in ecology & evolution 17:76-83. Wilson, K. A., M. I. Westphal, H. P. Possingham, and J. Elith. 2005. Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biological Conservation 122:99-112. Yunhao, C., S. Peijun, L. Xiaobing, C. Jin, and L. Jing. 2006. A combined approach for estimating vegetation cover in urban/suburban environments from remotely sensed data. Computers & Geosciences 32:1299-1309. Zomeni, M., J. Tzanopoulos, and J. D. Pantis. 2008. Historical analysis of landscape change using remote sensing techniques: An explanatory tool for agricultural transformation in Greek rural areas. Landscape and urban planning 86:38-46. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7272 | - |
dc.description.abstract | 八色鳥(Pitta nympha)為東亞遷徙性鳥種,全球性的易危鳥種之一,在臺灣屬夏候鳥,是其物種重要繁殖地之一,近年研究指出在臺繁殖八色鳥之族群數量持續下降,且北部下降最為明顯。本研究試從過去2001年至2017年點位資料中瞭解八色鳥分布狀況,整理了三十個環境因子探討物種棲地偏好環境,利用分布預測模式來瞭解影響八色鳥在臺分布的環境因子各貢獻度為何,以及推估目前臺灣八色鳥分布範圍,另外針對重點調查地點如:石門水庫、苗栗獅潭大湖、曾文水庫、美濃山區以及湖山水庫,進行年間大地衛星影像之分析棲地時空變化,比照經由監測資料趨勢與指數算出之年間族群指數,來查看巨觀棲地之變化對於八色鳥族群數量是否有影響。結果認為分布和過去研究所做之分布預測模型大致吻合,可得知八色鳥在臺環境偏好變化不大,影響出現之環境因子重要度以闊葉林面積最為重要,呈現正相關,其餘海拔標準差、農田地面積、海拔高度、竹林地面積等因子貢獻度較高,皆為棲地特徵類型因子,而主要調查地區族群數量上湖山水庫、石門水庫、美濃山區數量呈現下降趨勢,曾文水庫在數量呈現上升趨勢,衛星影像判別之地景分析上,除了湖山水庫有較大棲地上變化,其餘植物面積皆無明顯減少或上升。對於候鳥的研究,要考慮繁殖地與各度冬地兩地的棲地情況,近年八色鳥主要度冬地之一的婆羅洲因油棕樹的種植,取代了部分棲息環境,度冬存活率如果下降,對繁殖地的數目也會有衝擊,過去研究認為八色鳥在台灣各分區間數量下降速度不同,推測臺灣本島有來自不同度冬地的八色鳥族群並未遭受到棲地上的破壞。臺灣為八色鳥重要繁殖地,對保育存在不可或缺的角色,本研究試圖找出八色鳥偏好的環境因子,認為棲地特徵上的影響比氣候、人為活動等更為首要考量,希冀此研究可給予國際間八色鳥物種保育時更明確的方向。 | zh_TW |
dc.description.abstract | Fairy Pitta (Pitta nympha) is a migratory bird species in East Asia. It is a summer migrant in Taiwan and one of the most vulnerable species in the world. In recent years, the number of Fairy Pitta in Taiwan has decreased, and a significant decline has been observed in the northern area of Taiwan. This study uses 30 environmental factors to explore the habitat preferences of Fairy Pitta and ranking the contribution of each environmental factors by using the species distribution model, and then estimated the current distribution of pitta nympha in Taiwan. In addition, this study uses satellite imagery to evaluate the temporal and spatial changes of the main survey sites such as: Shimen Reservoir, Miaoli, Zengwen Reservoir, Meinong and Hushan Reservoir. The results show that the distribution range is agree with previous studies, and it can be seen that the pitta nympha has little change in the environmental preference in Taiwan. The most importance environmental factors is the broad-leaved forest area, with a positive correlation. Other factors are the standard deviation of altitude, farmland area, altitude, and bamboo forest area. A decreasing trend was observed in number of Fairy Pitta in Hushan Reservoir, Shimen Reservoir, and Meinong while an increasing trend showed in Zengwen Reservoir. In the other hand, the forest areas have not decreased or increased significantly in satellite image of habitat except for the Hushan Reservoir. For the study of migratory birds, the habitats of the breeding grounds and the wintering sites should be considered as well. Main wintering sites: Borneo, where the natural forest area has been greatly reduced due to the cultivation of oil palm trees in recent years. In Taiwan, the number of Fairy Pitta in each region has declined with different rates. Therefore, we hypothesize that Fairy Pitta may come from different wintering sites. Taiwan is an important breeding ground and plays an important role in international conservation. This study provides the direction of species conservation in Fairy Pitta and demonstrates that the impact of habitat characteristics is more important than climate, human activities, etc. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:40:50Z (GMT). No. of bitstreams: 1 ntu-108-R06b44006-1.pdf: 2995695 bytes, checksum: 98d57f86b638db45f2513653195e44b6 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目錄i
圖目錄iii 表目錄v 摘要vi ABSTRACTvii 前言1 材料與方法3 一、資料來源3 八色鳥點位紀錄3 研究範圍3 環境因子資料3 二、生物分布預測模式6 模式建立6 決定閾值8 整合模式8 模式驗證8 三、大地衛星影像分析9 研究範圍9 衛星影像選擇10 衛星影像計算10 四、指標地區族群趨勢分析10 結果12 物種出現紀錄12 棲地偏好 12 生物分佈預測模式結果12 環境因子對模式的貢獻程度分析12 八色鳥指標地區數量趨勢13 衛星影像時空變化13 討論14 臺灣八色鳥族群偏好棲息環境特徵14 臺灣八色鳥重點調查地區14 整合兩分析解釋假設15 八色鳥度冬棲地16 結論17 參考文獻18 圖23 表42 | |
dc.language.iso | zh-TW | |
dc.title | 臺灣八色鳥分布特性 | zh_TW |
dc.title | Distribution Patterns of Pitta nympha in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 柯佳吟,張琪如 | |
dc.subject.keyword | 八色鳥,生物分布預測模式,衛星影像,巨觀棲地,遷徙連接度,候鳥, | zh_TW |
dc.subject.keyword | Fairy Pitta (Pitta nympha),Species Distriution Model,Satellite Imagery,Migratory connectivity,Migratory birds, | en |
dc.relation.page | 47 | |
dc.identifier.doi | 10.6342/NTU201902098 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-07-30 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
dc.date.embargo-lift | 2029-06-27 | - |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 此日期後於網路公開 2029-06-27 | 2.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。