Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72716
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡(Ching-I Huang)
dc.contributor.authorYun-Tse Loen
dc.contributor.author羅允澤zh_TW
dc.date.accessioned2021-06-17T07:04:20Z-
dc.date.available2021-01-20
dc.date.copyright2021-01-20
dc.date.issued2021
dc.date.submitted2021-01-11
dc.identifier.citation[1] C.M. Bates, F.S. Bates, 50th anniversary perspective: block polymers-pure potential, Macromolecules 50(1) (2017) 3-22.
[2] S.O. Kim, H.H. Solak, M.P. Stoykovich, N.J. Ferrier, J.J. de Pablo, P.F. Nealey, Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates, Nature 424(6947) (2003) 411-414.
[3] J. Bang, S.H. Kim, E. Drockenmuller, M.J. Misner, T.P. Russell, C.J. Hawker, Defect-free Nanoporous thin films from ABC triblock copolymers, J. Am. Chem. Soc. 128(23) (2006) 7622-7629.
[4] Z. Li, K. Hur, H. Sai, T. Higuchi, A. Takahara, H. Jinnai, S.M. Gruner, U. Wiesner, Linking experiment and theory for three-dimensional networked binary metal nanoparticle–triblock terpolymer superstructures, Nat. Commun. 5(1) (2014) 1-10.
[5] K. Aissou, M. Mumtaz, A. Alvarez‐Fernandez, J. Mercat, S. Antoine, G. Pécastaings, V. Ponsinet, C. Dobrzynski, G. Fleury, G. Hadziioannou, Metallic nanodot patterns with unique symmetries templated from ABC triblock terpolymer networks, Macromol. Rapid Commun. 39(7) (2018) 1700754.
[6] L.-Y. Shi, F. Liao, L.-C. Cheng, S. Lee, R. Ran, Z. Shen, C.A. Ross, Core–shell and zigzag nanostructures from a thin film silicon-containing conformationally asymmetric triblock terpolymer, ACS Macro Letters 8(7) (2019) 852-858.
[7] S. Lee, L.-C. Cheng, K.G. Yager, M. Mumtaz, K. Aissou, C.A. Ross, In situ study of ABC triblock terpolymer self-assembly under solvent vapor annealing, Macromolecules 52(4) (2019) 1853-1863.
[8] G. Geise, B. Freeman, D. Paul, Characterization of a sulfonated pentablock copolymer for desalination applications, Polymer 51(24) (2010) 5815-5822.
[9] J. Zuo, G.M. Shi, S. Wei, T.-S. Chung, The development of novel Nexar block copolymer/Ultem composite membranes for C2–C4 alcohols dehydration via pervaporation, ACS Appl. Mater. Interfaces 6(16) (2014) 13874-13883.
[10] K.M. Meek, R. Sun, C. Willis, Y.A. Elabd, Hydroxide conducting polymerized ionic liquid pentablock terpolymer anion exchange membranes with methylpyrrolidinium cations, Polymer 134 (2018) 221-226.
[11] P.V. Truong, S. Shingleton, M. Kammoun, R.L. Black, M. Charendoff, C. Willis, H. Ardebili, G.E. Stein, Structure and properties of sulfonated pentablock terpolymer films as a function of wet–dry cycles, Macromolecules 51(6) (2018) 2203-2215.
[12] E.R. Thomas, A. Jain, S.C. Mann, Y. Yang, M.D. Green, W.S. Walker, F. Perreault, M.L. Lind, R. Verduzco, Freestanding self-assembled sulfonated pentablock terpolymer membranes for high flux pervaporation desalination, J. Membrane Sci. 613 (2020) 118460.
[13] M. Hwang, R. Sun, C. Willis, Y. Elabd, Solid‐state alkaline fuel cell performance of pentablock terpolymer with methylpyrrolidinium cations as anion exchange membrane and ionomer, Fuel Cells 5 (2020) 624-633.
[14] K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance, Adv. Drug Deliver Rev. 64 (2012) 37-48.
[15] A. Rösler, G.W. Vandermeulen, H.-A. Klok, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug Deliver Rev. 64 (2012) 270-279.
[16] C. Tsitsilianis, N. Stavrouli, V. Bocharova, S. Angelopoulos, A. Kiriy, I. Katsampas, M. Stamm, Stimuli responsive associative polyampholytes based on ABCBA pentablock terpolymer architecture, Polymer 49(13-14) (2008) 2996-3006.
[17] Y. Wu, X. Liu, Y. Wang, Z. Guo, Y. Feng, Synthesis and aggregation behaviors of well‐defined thermoresponsive pentablock terpolymers with tunable LCST, Macromol. Chem. Phys. 213(14) (2012) 1489-1498.
[18] C. Lv, Z. Zhang, J. Gao, J. Xue, J. Li, J. Nie, J. Xu, B. Du, Self-assembly of thermosensitive amphiphilic pentablock terpolymer PNIPAMx-b-PtBA90-b-PPO36-b-PtBA90-b-PNIPAMx in dilute aqueous solution, Macromolecules 51(24) (2018) 10136-10149.
[19] E.J. Crossland, M. Nedelcu, C. Ducati, S. Ludwigs, M.A. Hillmyer, U. Steiner, H.J. Snaith, Block copolymer morphologies in dye-sensitized solar cells: probing the photovoltaic structure-function relation, Nano Letters 9(8) (2009) 2813-2819.
[20] K.W. Tan, D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, U. Wiesner, Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells, ACS nano 8(5) (2014) 4730-4739.
[21] F.S. Bates, G. Fredrickson, Block copolymers-designer soft materials, Physics today 52(2) (1999) 32-38.
[22] L. Leibler, Theory of microphase separation in block copolymers, Macromolecules 13(6) (1980) 1602-1617.
[23] M.W. Matsen, F.S. Bates, Unifying weak- and strong-segregation block copolymer theories, Macromolecules 29(4) (1996) 1091-1098.
[24] M. Takenaka, T. Wakada, S. Akasaka, S. Nishitsuji, K. Saijo, H. Shimizu, M.I. Kim, H. Hasegawa, Orthorhombic Fddd network in diblock copolymer melts, Macromolecules 40(13) (2007) 4399-4402.
[25] R.-M. Ho, Y.-W. Chiang, C.-C. Tsai, C.-C. Lin, B.-T. Ko, B.-H. Huang, Three-dimensionally packed nanohelical phase in chiral block copolymers, J. Am. Chem. Soc. 126(9) (2004) 2704-2705.
[26] R.-M. Ho, Y.-W. Chiang, C.-K. Chen, H.-W. Wang, H. Hasegawa, S. Akasaka, E.L. Thomas, C. Burger, B.S. Hsiao, Block copolymers with a twist, J. Am. Chem. Soc. 131(51) (2009) 18533-18542.
[27] G.M. Grason, Chirality transfer in block copolymer melts: Emerging concepts, ACS Macro Letters 4(5) (2015) 526-532.
[28] T. Wen, H.-F. Wang, M.-C. Li, R.-M. Ho, Homochiral evolution in self-assembled chiral polymers and block copolymers, Acc. Chem. Res. 50(4) (2017) 1011-1021.
[29] S. Lee, M.J. Bluemle, F.S. Bates, Discovery of a Frank-Kasper σ phase in sphere-forming block copolymer melts, Science 330(6002) (2010) 349-353.
[30] T.S. Bailey, Morphological behavior spanning the symmetric AB and ABC block copolymer states, University of Minnesota, 2001.
[31] Z. Guo, G. Zhang, F. Qiu, H. Zhang, Y. Yang, A.-C. Shi, Discovering ordered phases of block copolymers: new results from a generic fourier-space approach, Phys. Rev. Lett. 101(2) (2008) 028301.
[32] M. Liu, W. Li, F. Qiu, A.-C. Shi, Theoretical study of phase behavior of frustrated ABC linear triblock copolymers, Macromolecules 45(23) (2012) 9522-9530.
[33] W. Li, F. Qiu, A.-C. Shi, Emergence and stability of helical superstructures in ABC triblock copolymers, Macromolecules 45(1) (2012) 503-509.
[34] C. Auschra, R. Stadler, New ordered morphologies in ABC triblock copolymers, Macromolecules 26(9) (1993) 2171-2174.
[35] R. Stadler, C. Auschra, J. Beckmann, U. Krappe, I. Voight-Martin, L. Leibler, Morphology and thermodynamics of symmetric poly(A-block-B-block-C) triblock copolymers, Macromolecules 28(9) (1995) 3080-3097.
[36] U. Krappe, R. Stadler, I. Voigt-Martin, Chiral assembly in amorphous ABC triblock copolymers. Formation of a helical morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) block copolymers, Macromolecules 28(13) (1995) 4558-4561.
[37] U. Breiner, U. Krappe, R. Stadler, Evolution of the 'knitting pattern' morphology in ABC triblock copolymers, Macromol. Rapid Commun. 17(8) (1996) 567-575.
[38] U. Breiner, U. Krappe, V. Abetz, R. Stadler, Cylindrical morphologies in asymmetric ABC triblock copolymers, Macromol. Chem. Phys. 198(4) (1997) 1051-1083.
[39] U. Breiner, U. Krappe, T. Jakob, V. Abetz, R. Stadler, Spheres on spheres-a novel spherical multiphase morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) triblock copolymers, Polymer Bulletin 40(2-3) (1998) 219-226.
[40] S. Brinkmann, R. Stadler, E.L. Thomas, New structural motif in hexagonally ordered cylindrical ternary (ABC) block copolymer microdomains, Macromolecules 31(19) (1998) 6566-6572.
[41] H. Ott, V. Abetz, V. Altstädt, Morphological studies of poly(styrene)-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) in the composition region of the “knitting pattern” morphology, Macromolecules 34(7) (2001) 2121-2128.
[42] C.A. Tyler, J. Qin, F.S. Bates, D.C. Morse, SCFT study of nonfrustrated ABC triblock copolymer melts, Macromolecules 40(13) (2007) 4654-4668.
[43] J. Qin, F.S. Bates, D.C. Morse, Phase behavior of nonfrustrated ABC triblock copolymers: weak and intermediate segregation, Macromolecules 43(11) (2010) 5128-5136.
[44] T. Sun, P. Tang, F. Qiu, A.-C. Shi, Emergence of ordered network mesophases in kinetic pathways of order–order transition for linear ABC triblock terpolymers, Soft matter 12(48) (2016) 9769-9785.
[45] Y. Mogi, K. Mori, H. Kotsuji, Y. Matsushita, I. Noda, C.C. Han, Molecular weight dependence of the lamellar domain spacing of ABC triblock copolymers and their chain conformations in lamellar domains, Macromolecules 26(19) (1993) 5169-5173.
[46] Y. Mogi, M. Nomura, H. Kotsuji, K. Ohnishi, Y. Matsushita, I. Noda, Superlattice structures in morphologies of the ABC triblock copolymers, Macromolecules 27(23) (1994) 6755-6760.
[47] Y. Matsushita, J. Suzuki, M. Seki, Surfaces of tricontinuous structure formed by an ABC triblock copolymer in bulk, Physica B: Condensed Matter 248(1-4) (1998) 238-242.
[48] T.S. Bailey, C.M. Hardy, T.H. Epps, F.S. Bates, A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers, Macromolecules 35(18) (2002) 7007-7017.
[49] T.H. Epps, T.S. Bailey, R. Waletzko, F.S. Bates, Phase behavior and block sequence effects in lithium perchlorate-doped poly(isoprene-b-styrene-b-ethylene oxide) and poly(styrene-b-isoprene-b-ethylene oxide) triblock copolymers, Macromolecules 36(8) (2003) 2873-2881.
[50] T.H. Epps, E.W. Cochran, T.S. Bailey, R.S. Waletzko, C.M. Hardy, F.S. Bates, Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers, Macromolecules 37(22) (2004) 8325-8341.
[51] J. Chatterjee, S. Jain, F.S. Bates, Comprehensive phase behavior of poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers, Macromolecules 40(8) (2007) 2882-2896.
[52] V. Saranathan, C.O. Osuji, S.G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E.R. Dufresne, R.O. Prum, Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales, Proc. Natl. Acad. Sci. U. S. A. 107(26) (2010) 11676-11681.
[53] M. Saba, M. Thiel, M.D. Turner, S. Hyde, M. Gu, K. Grosse-Brauckmann, D.N. Neshev, K. Mecke, G.E. Schröder-Turk, Circular dichroism in biological photonic crystals and cubic chiral nets, Phys. Rev. Lett. 106(10) (2011) 103902.
[54] C.D. Cowman, E. Padgett, K.W. Tan, R. Hovden, Y. Gu, N. Andrejevic, D. Muller, G.W. Coates, U. Wiesner, Multicomponent nanomaterials with complex networked architectures from orthogonal degradation and binary metal backfilling in ABC triblock terpolymers, J. Am. Chem. Soc. 137(18) (2015) 6026-6033.
[55] S. Antoine, K. Aissou, M. Mumtaz, S. Telitel, G. Pécastaings, A.L. Wirotius, C. Brochon, E. Cloutet, G. Fleury, G. Hadziioannou, Core–shell double gyroid structure formed by linear ABC terpolymer thin films, Macromol. Rapid Commun. 39(9) (2018) 1800043.
[56] J. Zhang, F.S. Bates, Dodecagonal quasicrystalline morphology in a poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) tetrablock terpolymer, J. Am. Chem. Soc. 134(18) (2012) 7636-7639.
[57] S. Chanpuriya, K. Kim, J. Zhang, S. Lee, A. Arora, K.D. Dorfman, K.T. Delaney, G.H. Fredrickson, F.S. Bates, Cornucopia of nanoscale ordered phases in sphere-forming tetrablock terpolymers, ACS Nano 10(5) (2016) 4961-4972.
[58] C. Duan, M. Zhao, Y. Qiang, L. Chen, W. Li, F. Qiu, A.-C. Shi, Stability of two-dimensional dodecagonal quasicrystalline phase of block copolymers, Macromolecules 51(19) (2018) 7713-7721.
[59] F.S. Bates, M.A. Hillmyer, T.P. Lodge, C.M. Bates, K.T. Delaney, G.H. Fredrickson, Multiblock polymers: panacea or pandora’s box?, Science 336(6080) (2012) 434-440.
[60] Q. Xie, Y. Qiang, G. Zhang, W. Li, Emergence and stability of Janus-like superstructures in an ABCA linear tetrablock copolymer, Macromolecules 53 (2020) 7380-7388.
[61] X. Ye, X. Yu, T. Shi, Z. Sun, L. An, Z. Tong, A self-consistent field theory study on the morphologies of linear ABCBA and H-shaped (AB)2C(BA)2 block copolymers, J. Phys. Chem. B 110(46) (2006) 23578-23582.
[62] A.J. Meuler, G. Fleury, M.A. Hillmyer, F.S. Bates, Structure and mechanical properties of an O70 (Fddd) network-forming pentablock terpolymer, Macromolecules 41(15) (2008) 5809-5817.
[63] A.J. Meuler, Network morphologies in monodisperse and polydisperse multiblock terpolymers, University of Minnesota (2009).
[64] H.-H. Liu, C.-I. Huang, A.-C. Shi, Self-Assembly of Linear ABCBA Pentablock Terpolymers, Macromolecules 48(17) (2015) 6214-6223.
[65] R. Nap, I. Erukhimovich, G. Ten Brinke, Self-assembling block copolymer systems involving competing length scales: a route toward responsive materials, Macromolecules 37(11) (2004) 4296-4303.
[66] J. Masuda, A. Takano, Y. Nagata, A. Noro, Y. Matsushita, Nanophase-separated synchronizing structure with parallel double periodicity from an undecablock terpolymer, Phys. Rev. Lett. 97(9) (2006) 098301.
[67] R. Nap, N. Sushko, I. Erukhimovich, G. Ten Brinke, Double periodic lamellar-in-lamellar structure in multiblock copolymer melts with competing length scales, Macromolecules 39(19) (2006) 6765-6770.
[68] A. Subbotin, T. Klymko, G. Ten Brinke, Lamellar-in-lamellar structure of A-b-(B-b-C)m-b-B-b-A multiblock copolymers, Macromolecules 40(8) (2007) 2915-2918.
[69] W. Li, A.-C. Shi, Theory of hierarchical lamellar structures from A(BC)nBA multiblock copolymers, Macromolecules 42(3) (2009) 811-819.
[70] Y. Xu, W. Li, F. Qiu, Y. Yang, A.-C. Shi, Stability of perpendicular and parallel lamellae within lamellae of multiblock terpolymers, J. Phys. Chem. B 114(46) (2010) 14875-14883.
[71] L. Wang, J. Lin, L. Zhang, Hierarchically ordered microstructures self-assembled from A(BC)n multiblock copolymers, Macromolecules 43(3) (2010) 1602-1609.
[72] Y. Xu, W. Li, F. Qiu, Y. Yang, A.-C. Shi, The influence of volume fractions on the phase behaviors of linear A(BC)nBA' multiblock terpolymers, Phys. Chem. Chem. Phys. 13(27) (2011) 12421-12428.
[73] N. Xie, M. Liu, H. Deng, W. Li, F. Qiu, A.-C. Shi, Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers, J. Am. Chem. Soc. 136(8) (2014) 2974-2977.
[74] B. Zhao, W. Jiang, L. Chen, W. Li, F. Qiu, A.-C. Shi, Emergence and stability of a hybrid lamella–sphere structure from linear ABAB tetrablock copolymers, ACS Macro Letters 7(1) (2017) 95-99.
[75] S. Ahn, J.K. Kim, B. Zhao, C. Duan, W. Li, Morphology transitions of linear A1B1A2B2 tetrablock copolymers at symmetric overall volume fraction, Macromolecules 51(11) (2018) 4415-4421.
[76] S. Ahn, Y. Seo, J.K. Kim, C. Duan, L. Zhang, W. Li, Cylindrical to lamellar microdomain transition upon heating for a linear tetrablock copolymer with upper critical ordering transition, Macromolecules 52(22) (2019) 9039-9044.
[77] Q. Xie, Y. Qiang, W. Li, Regulate the stability of gyroids of ABC-type multiblock copolymers by controlling the packing frustration, ACS Macro Letters 9(2) (2020) 278-283.
[78] Z.M. Stadnik, Physical properties of quasicrystals, Springer Science Business Media, 2012.
[79] X. Zeng, G. Ungar, Y. Liu, V. Percec, A.E. Dulcey, J.K. Hobbs, Supramolecular dendritic liquid quasicrystals, Nature 428(6979) (2004) 157-160.
[80] X. Zeng, Liquid quasicrystals, Curr. Opin. Colloid Interface Sci. 9(6) (2005) 384-389.
[81] G.H. Mehl, Quasi‐periodic organization in soft self‐assembling matter, Angew. Chem., Int. Ed. 44(5) (2005) 672-673.
[82] K. Hayashida, T. Dotera, A. Takano, Y. Matsushita, Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers, Phys. Rev. Lett. 98(19) (2007) 195502.
[83] T. Dotera, Mean-field theory of Archimedean and quasicrystalline tilings, Philos. Mag. 87(18-21) (2007) 3011-3019.
[84] Y. Matsushita, K. Hayashida, T. Dotera, A. Takano, Kaleidoscopic morphologies from ABC star-shaped terpolymers, J. Phys.: Condens. Matter 23(28) (2011) 284111.
[85] T. Dotera, Toward the discovery of new soft quasicrystals: from a numerical study viewpoint, J. Polym. Sci., Part B: Polym. Phys. 50(3) (2012) 155-167.
[86] H. Frielinghaus, N. Hermsdorf, K. Almdal, K. Mortensen, L. Messé, L. Corvazier, J. Fairclough, A. Ryan, P. Olmsted, I. Hamley, Micro- vs. macro-phase separation in binary blends of poly(styrene)-poly(isoprene) and poly (isoprene)-poly(ethylene oxide) diblock copolymers, Europhys. Lett. 53(5) (2001) 680.
[87] G. Tzeremes, K.Ø. Rasmussen, T. Lookman, A. Saxena, Efficient computation of the structural phase behavior of block copolymers, Phys. Rev. E 65(4) (2002) 041806.
[88] M.W. Matsen, The standard gaussian model for block copolymer melts, J. Phys.: Condens. Matter 14(2) (2001) R21.
[89] I.W. Hamley, Developments in block copolymer science and technology, John Wiley Sons, 2004.
[90] G. Fredrickson, The equilibrium theory of inhomogeneous polymers, Oxford University Press on Demand, 2006.
[91] C.-H. Chang, 探討'非失措'之ABCBA線性五嵌段共聚合物於熔融態之自組裝行為, 臺灣大學高分子科學與工程學研究所學位論文 (2018) 1-50.
[92] I.Y. Erukhimovich, Weak segregation theory and non-conventional morphologies in the ternary ABC triblock copolymers, The European Physical Journal E 18(4) (2005) 383-406.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72716-
dc.description.abstract本研究運用自洽平均場理論探討ABCBA線性五嵌段共聚合物於非失措系統下之自組裝行為,並且與對應之ABC線性三嵌段共聚合物進行比較,而我們著重在作用力參數與組成對型態的影響,其中非失措系統即為A、C兩成分間Flory-Huggins作用力參數為最大。首先,當系統在作用力參數為對稱條件(χABN=χBCN)且B為主成分時,我們觀察到在兩系統中皆有交替型結構穩定存在於相圖中。隨著成分間不相容性的下降,由於ABC線性三嵌段中A與C成分聚集能力相當,交替型結構仍然能自組裝形成。然而在ABCBA五嵌段系統中,因為位於末端之兩條A鏈段具有較高之自由度,因此傾向進入到B成分之中形成C結構在AB-mixed的domain型態,使得交替型結構在ABCBA於中低作用力中消失。接著我們進一步觀察作用力參數為非對稱條件(χABN≠χBCN),並且針對χBCN大於χABN的系統進行探討,發現到在非對稱作用力參數下交替型結構皆非最穩定之結構。在ABC三嵌段中,主要是以核-殼結構為主要觀察到的相,但在ABCBA五嵌段中則更多了C與AB-mixed的domain分離的結構。藉由一系列的探討我們不僅找到合適之作用力參數擬合實驗系統,這些模擬結果更可作為實驗與理論學者在拓展三成分共聚合物之參考並促成多元結構的發展。zh_TW
dc.description.abstractThe self-assembly of ABCBA linear pentablock terpolymer melts with non-frustrated interactions of χACN larger than χABN and χBCN are investigated and compared with the corresponding ABC linear triblock terpolymers by three dimensional (3-D) self-consistent field theory (SCFT). In particular, we focus on the effects of the compositions, the interaction parameters, and the number of blocks. Firstly, when the interaction parameters are symmetric (χABN=χBCN) and B is major, both ABC triblocks and ABCBA pentablocks can exhibit intriguing A- and C-formed microstructures in the B-matrix. With decreasing the segregation strength, these various alternating phases can still be observed in the ABC systems. However, due to the chain topology, the A blocks tend to mix with the B blocks in the ABCBA pentablocks, which results in the formation of C-formed structures in the AB-mixed domains. Next, when χABN≠χBCN, in particular at χABN<χBCN, the alternating phases can hardly be formed in these two systems. Aside from the core-shell types structures mainly found in the ABC triblocks, the phase segregation between C and AB-mixed domains can more be discovered in ABCBA. In conclusion, these results not only capture the self-assembling behavior of ISOSI pentablocks, but also provide concrete suggestions for designing the diverse microstructures in the linear ABC-type terpolymers of ABC and ABCBA at non-frustrated interaction parameter regimes.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:04:20Z (GMT). No. of bitstreams: 1
U0001-0901202111013200.pdf: 2893364 bytes, checksum: ede4e208923098c3764a7e3bd204a3ac (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
Table Captions vi
Figure Captions vii
Chapter 1. Introduction 1
Chapter 2. Theory and Methods 10
Chapter 3. Results and Discussion 15
3.1 Phase behavior of ABCBA and ABC block copolymers with fA=fC and χABN=χBCN 16
3.2 Phase Behavior of ABC and ABCBA Terpolymer Melts with Asymmetric Interaction Parameters (χACN>>χABN≠χBCN) 19
Chapter 4 Conclusions 32
References 34
dc.language.isoen
dc.subject多嵌段共聚合物zh_TW
dc.subject自洽平均場理論zh_TW
dc.subjectFlory-Huggins 作用力參數zh_TW
dc.subject非失措系統zh_TW
dc.subjectSelf-consistent field theoryen
dc.subjectMultiblock terpolymersen
dc.subjectNon-frustrated systemsen
dc.title探討融熔態 ABCBA 線性五嵌段共聚物於非失措系統之自組裝行為zh_TW
dc.titleSelf-Assembly of Non-Frustrated ABCBA Linear Pentablock Terpolymersen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee胡孝光(Shiaw-Guang Hu),莊偉綜(Wei-Tsung Chuang)
dc.subject.keyword自洽平均場理論,多嵌段共聚合物,Flory-Huggins 作用力參數,非失措系統,zh_TW
dc.subject.keywordSelf-consistent field theory,Multiblock terpolymers,Non-frustrated systems,en
dc.relation.page47
dc.identifier.doi10.6342/NTU202100033
dc.rights.note有償授權
dc.date.accepted2021-01-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0901202111013200.pdf
  未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved