請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7270完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許正一(Zeng-Yei Hseu) | |
| dc.contributor.author | Cho-Yin Wu | en |
| dc.contributor.author | 吳卓穎 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:40:49Z | - |
| dc.date.available | 2024-08-07 | |
| dc.date.available | 2021-05-19T17:40:49Z | - |
| dc.date.copyright | 2019-08-07 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-31 | |
| dc.identifier.citation | Adams, C., Witt, E.C., Wang, J., Shaver, D.K., Summers, D., Filali–Meknassi, Y., Shi, H., Luna, R., & Anderson, N. (2007). Chemical Quality of Depositional Sediments and Associated Soils in New Orleans and the Louisiana Peninsula Following Hurricane Katrina. Environmental Science & Technology, 41(10), 3437–3443.
Agency for Toxic Substances and Disease Registry. (2012). Public Health Statement V Public Health Statements about hazardous substances and their health effects. Akoumianaki–Ioannidou, A., Barouchas, P. E., Ilia, E., Kyramariou, A., & Moustakas, N. K. (2016). Effect of vanadium on dry matter and nutrient concentration in sweet basil (Ocimum basilicum L.). Australian Journal of Crop Science, 10(2), 199–206. Algeo, T.J., & Maynard, J.B. (2008). Trace–metal covariation as a guide to water–mass conditions in ancient anoxic marine environments. Geosphere, 4(5), 872. Baken, S., Larssonb, M.A., Gustafssonc, JP, Cubaddad, F, & Smoldersa, E. (2012). Ageing of V in soils and consequences for bioavailability. European Journal of Soil Science, 63, 839–847. Baker D.E., Amacher M.C. (1982). Nickel, copper, zinc and cadmium. A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of Soil Analysis, Chemical and Microbiological Properties, ASA Inc. SSSA Inc. Publishers, NY, USA. Balan, E. (2006). The oxidation state of V in titanomagnetite from layered basic intrusions. American Mineralogist, 91(5–6), 953–956. Bayer, A.M., & Becherer, B.A. (1989). High–speed tool steels ASM handbook (pp. 51–59). Materials Park, OH: ASM International Baken, S., Larsson, M. A., Gustafsson, J. P., Cubadda, F., & Smolders, E. (2012). Ageing of vanadium in soils and consequences for bioavailability. European Journal of Soil Science, 63(6), 839–847. Berrow, M. L., Wilson, M. J., & Reaves, G. A. (1978). Origin of extractable titanium and vanadium in the a horizons of scottish podzols. Geoderma, 21(2), 89–103. Bianconi, A., Garcia, J., Benfatto, M., Marcelli, A., Natoli, C. R., & Ruiz–Lopez, M. F. (1991). Multielectron excitations in the K–edge x–ray–absorption near–edge spectra of V, Cr, and Mn 3d0 compounds with tetrahedral coordination. Physical Review B, 43(9), 6885–6892. Bosque–Sendra, J.M., Valencia, M.C., & Boudra, S. (1998). Speciation of V (IV) and V (V) with Eriochrome Cyanine R in natural waters by solid phase spectrophotometry. Fresenius' Journal of Analytical Chemistry, 360, 31–37. Brumsack, H.J. (2006). The trace metal content of recent organic carbon–rich sediments: implications for cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 344–361. Burke, I. T., Mayes, W. M., Peacock, C. L., Brown, A. P., Jarvis, A. P., & Gruiz, K. (2012). Speciation of Arsenic, Chromium, and Vanadium in Red Mud Samples from the Ajka Spill Site, Hungary. Environmental Science & Technology, 46(6), 3085–3092. Cappuyns, V., & Slabbinck, E. (2012). Occurrence of Vanadium in Belgian and European Alluvial Soils. Applied and Environmental Soil Science, 2012, 12. Chandrajith, R., Dissanayake, C. B., & Tobschall, H. J. (2005). The abundances of rarer trace elements in paddy (rice) soils of Sri Lanka. Chemosphere, 58(10), 1415–1420. Chaurand, P., Rose, J., Briois, V., Olivi, L., Hazemann, J.–L., Proux, O., Domas, J., & Bottero, J.Y. (2007). Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. Journal of Hazardous Materials, 139(3), 537–542. Cheshire, M. V., Berrow, M. L., Goodman, B. A., & Mundie, C. M. (1977). Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochimica et Cosmochimica Acta, 41(8), 1131–1138. Cicchella, D., Giaccio, L., Dinelli, E., Albanese, S., Lima, A., Zuzolo, D., Valera, P., & Vivo, B.De. (2015). GEMAS: spatial distribution of chemical elements in agricultural and grazing land soil of Italy. Journal of Geochemical Exploration, 154, 129–142. Chen Z.S., Z.Y. Hseu, C.T. Tsai, (2015). The Soils of Taiwan. Springer Press, New York. Condie, K.C. (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104(1–4), 1–37. Crans, D., Amin, S., & Keramidas, A. (1998). Chemistry of relevance to V in the environment. In N. J (Ed.), V in the Environment. Part 1: Chemistry and Biochemistry (pp. 73–96). New York: John Wiley and Sons. Dobritskaya, U.I. (1969). Distribution of V in natural objects. Agrokhimiya, 3, 143. Dudka, S., & Market, B. (1992). Baseline contents of As, Ba, Be, Li, Nb, Sr and V in surface soils of Poland. Science of the Total Environment, 122, 279–290. Ferreira, A., Inacio, M.M., Morgado, P., Batista, M.J., Ferreira, L., Pereira, V., & Pinto, M.S. (2001). Low–density geochemical mapping in Portugal. Applied Geochemistry, 16, 1323–1331. Ferreira, R. S. G., de Oliveira, P. G. P., & Noronha, F. B. (2001). The effect of the nature of vanadium species on benzene total oxidation. Applied Catalysis B: Environmental, 29(4), 275–283. Filik, H., & Aksu, D. (2012). Determination of Vanadium in Food Samples by Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectroscopy. Food Analytical Methods, 5(3), 359–365. Fitzpatrick, A.E. (1970). A technique for the preparation of large thin sections of soils and unconsolidated materials. In D. Osmond & P. Bullock (Eds.), Micromorphological techniques and applications (Vol. 2, pp. 3–31). Harpenden (U.K.): Agr. Res. Council, Soil Survey. Francavilla, J., & Chasteen, N.D. (1975). Hydroxide effects on electron–paramagnetic resonance–spectrum of aqueous vanadyl(IV) ion. Inorganic Chemistry, 14(11), 2960–2862. Francois, R. (1988). A study on the regulation of the contents of some trace–metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in saanich inlet sediments, British–Columbia, Canada. Marine Geology, 83(1–4), 285–308. Frank, A., Madejb, A., Galganc, V., & Peterssonc, L.R. (1996). V poisoning of cattle with basic slag. Contents in tissues from poisoned animals and from a reference, slaughterhouse material. The Science of the Total Environment, 181, 73–92. Galloway, J.N., Eisenreich, S.J., and Scott, B.C. (1981). Toxic Substances in Atmospheric Deposition: A Review and Assessment. EPA 560 5–80–001. USEPA, Washington, DC. Gardner, W.H. (1986). Water Content. In K. A (Ed.), Methods of soil analysis, Part 1. Physical and mineralogical methods (2nd ed., pp. 493–541). WI USA: Agron. Monogr. 9. ASA and SSSA. Madison. Gee, G.W., & Bauder, J.W. (1979). Particle–Size Analysis by Hydrometer – Simplified Method for Routine Textural Analysis and a Sensitivity Test of Measurement Parameters. Soil Science Society of America Journal, 43, 1004–1007. Gehring, A.U., Fry, I.V., Luster, J., & Sposito, G. (1994). V in sepiolite – a redox–indicator for an ancient closed brine system in the Madrid basin, central Spain. Geochimica et Cosmochimica Acta, 58(16), 3345–3351. Govindaraju, K. (1994). Compilation of working values and sample description for 383 geostandards. Geostandards Newsletter Special Issue, 18, 1–158. Granero, S., & Domingo, J.L. (2002). Levels of metals in soils of Alcala de Henares, Spain: human health risks. Environment International, 28, 159–164. Gregorauskiene V, Salminen R, Reimann C, Chekushin V. (2000). Field manual for Barents ecogeochemistry project. Geological survey of Finland. Report S/44/0000/2/2000. Espoo. 58 pp. Guagliardi, I., Cicchella, D., De Rosa, R., Ricca, N., & Buttafuoco, G. (2018). Geochemical sources of vanadium in soils: Evidences in a southern Italy area. Journal of Geochemical Exploration, 184, 358–364. Hernandez, H., & Rodriguez, R. (2012). Geochemical evidence for the origin of V in an urban environment. Environmental Monitoring and Assessment, 184, 5327–5342. Hope, B.K. (1997). An assessment of the global impact of anthropogenic V. Biogeochemistry, 37(1), 1–13. Horie, T., Sumino, M., Tanaka, T., Matsushita, Y., Ichimura, T., & Yoshida, J.I. (2010). Photodimerization of Maleic Anhydride in a Microreactor Without Clogging. Organic Process Research & Development, 14(2). Hosseini, M.J., Shaki, F., Ghazi–Khansari, M., & Pourahmad, J. (2013). Toxicity of V on isolated rat liver mitochondria: a new mechanistic approach. Metallomics, 5, 152–166. Hseu, Z.Y., & Iizuka, Y. (2013). Pedogeochemical characteristics of chromite in a paddy soil derived from serpentinites. Geoderma, 202–203, 126–133. Huang, J.H. (2014). Impact of microorganisms on arsenic biogeochemistry: a review. Water, Air, & Soil Pollution, 225(2). Huang, J.H., Huangb, F., Evans, L., & Glasauer, S. (2015). V: Global (bio)geochemistry. Chemical Geology, 417, 68–89. Hurlbut, C.S., & Klein, C. (1977). Manual of Mineralogy. New York: John Wiley and Sons. Imtiaz, M., Mushtaq, M.A., Rizwan, M.S., Arif, M.S., Yousaf, B., Ashraf, M., Shuanglian, X., Rizwan, M., Mehmood, S., & Tu, S. (2016). Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to V. Environmental Science and Pollution Research, 23, 19787–19796. International Organization for Standardization. Soil quality – Extraction of trace elements soluble in aqua regia (Vol. ISO 11466: 1995). Geneva, Switzerland. Jayawardana, D. T., Pitawala, H. M. T. G. A., & Ishiga, H. (2015). Geochemical evidence for the accumulation of vanadium in soils of chronic kidney disease areas in Sri Lanka. Environmental Earth Sciences, 73(9), 5415–5424. Jiao, X., & Teng, Y. (2008). Techniques on soil remediation and disposal of V pollution. Chinese Journal of Soil Science, 39, 448–452. Kabata–Pendias, A. (2011). Trace elements in soils and plants. Boca Raton: CRC Press. Khan, S., Kazi, T.G., Kolachi, N.F., Afridi, I., & Ullah, N. (2013). Sequential Extraction of V in Different Soil Samples Using Conventional and Ultrasonic Devices. Journal of AOA C International, 96, 650–656. Kustin, K., Liu, S.T., Nicolini, C., & Toppen, D.L. (1974). Interaction of catechol and catechol derivatives with dioxoV(V) .1. kinetics of complex–formation in acidic media. Journal of the American Chemical Society, 96(24), 7410–7415. LARGO RESOURCES (2018). About vanadium. Retrieved from https://www.largoresources.com/company/about–vanadium/default.aspx Larsson, M.A. (2014). PhD Thesis. Uppsala, Sweden: Swedish University of Agricultural Sciences. Larsson, M. A., Baken, S., Gustafsson, J. P., Hadialhejazi, G., & Smolders, E. (2013). Vanadium bioavailability and toxicity to soil microorganisms and plants. Environmental Toxicology and Chemistry, 32(10), 2266–2273. Larsson, M.A., D'Amato, M., Cubadda, F., Raggi, A., Öbornc, .I, Kleja, D Berggren, & Gustafsson, J.P. (2015). Long–termfate and transformations of Vin a pine forest soilwith added converter lime. Geoderma, 259–260, 271–278. Larsson, M. A., Hadialhejazi, G., & Gustafsson, J. P. (2017). Vanadium sorption by mineral soils: Development of a predictive model. Chemosphere, 168, 925–932. Lide, D.R. (2008). CRC Handbook of Chemistry and Physics. Boca Raton FL: CRC Press. Lin, C.W., Lin, C.Y., Chang, C.C., Lee, R.H., Tsai, T.M., Chen, P.Y., Chi, W.C., & Huang, H.J. (2009). Early signalling pathways in rice roots under vanadate stress. Plant Physiology and Biochemistry, 47(5), 369–376. Llobet, J.M., & Domingo, J.L. (1984). Acute toxicity of V compounds in rats and mice. Toxicology Letters, 23, 227–231. Lu, X.Q., Johnson, W.D., & Hook, J. (1998). Reaction of vanadate with aquatic humic substances: an ESR and V–51 NMR study. Environmental Science & Technology, 32(15), 2257–2263. Luko, K.S., Antonio Menegario, A., Alfredo Suarez, C., Tafurt–Cardona, M., Henrique Pedrobom J., Marchini Rolisola, A.M.C., Tiago Sulato, E., & Kiang, C.H. (2017). In situ determination of V(V) by diffusive gradients in thin films and inductively coupled plasma mass spectrometry techniques using amberlite IRA–410 resin as a binding layer. Analytica Chimica Acta, 950, 32–40. Ma, Z., & Fu, Q. (2009). Comparison of Hypoglycemic Activity and Toxicity of Vanadium (IV) and Vanadium (V) Absorbed in Fermented Mushroom of Coprinus comatus. Biological Trace Element Research, 132, 278. Manta, D.S., Angelone, M., Bellance, A., Neri, R., & Sprovieri, M. (2001). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243. Martin, H. W., Young, T. R., Kaplan, D. I., L., S., & D.C., A. (1996). Evaluation of three herbaceous index plant species for bioavailability of soil cadmium, chromium, nickel and vanadium. Plant and Soil, 182(2), 199–207. Meers, E., Du Laing, G., Unamuno, V., Ruttens, A., Vangronsveld, J., Tack, F. M. G., & Verloo, M. G. (2007). Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma, 141(3), 247–259. Meers, E., Unamuno, V., Vandegehuchte, M., Vanbroekhoven, K., Geebelen, W., Samson, R., Vangronsveld, J., Diels, L., Ruttens, A., Laing, G. D., & Tack, F. (2005). Soil–solution speciation of CD as affected by soil characteristics in unpolluted and polluted soils. Environmental Toxicology and Chemistry, 24(3), 499–509. Mehra, O., & Jackson, M. (1960). Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Paper presented at the Seventh National Conference on Clays and clay minerals. Meharg, A.A., & Rahman, M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science and Technology, 37, 229–234. Mehra, O.P., & Jackson, M.L. (1960). Iron oxides removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays Clay Mineral, 7, 317–327. Mermut, A. R., Jain, J. C., Song, L., Kerrich, R., Kozak, L., & Jana, S. (1996). Trace Element Concentrations of Selected Soils and Fertilizers in Saskatchewan, Canada. Journal of Environmental Quality, 25(4), 845–853. Mikkonen, A., & Tummavuori, J. (1994). Retention of vanadium (V) by three Finnish mineral soils. European Journal of Soil Science, 45(3), 361–368. Ministry of Housing, Spatial Planning and the Environment. (1999). Environment Quality Standards in the Netherlands (pp. 627). Moore, D. S., Notz, W. I, & Flinger, M. A. (2013). The basic practice of statistics (6th ed.). New York, NY: W. H. Freeman and Company. Morford, J.L., Emerson, S.R., Breckel, E.J., & Kim, S.H. (2005). Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochimica et Cosmochimica Acta, 69, 5021–5032. Nechay, B.R., Nanning, L.B., Nechay, P.S.E., Post, R.L., Branthan, J.J., Macara, I.G., Nielsen, .FH. (1986). Role of V in biology. Federation Proceedings, 45(123–132). Nelson, D.W., & Sommers, L.E. (1996). Total Carbon, Organic Carbon, and Organic Matter. In S. DL (Ed.), In Methods of Soil Analysis. Part 3. Chemical Methods (pp. 995–997). WI, USA: SSSA. Novozamsky, I., Lexmond, T. M., & Houba, V. J. G. (1993). A Single Extraction Procedure of Soil for Evaluation of Uptake of Some Heavy Metals by Plants. International Journal of Environmental Analytical Chemistry, 51(1–4), 47–58. Nriagu, J.O. (1998). History, occurrence, and use of V. In N. JO (Ed.), V in the environment. Part 1: chemistry and biochemistry (pp. 1–24). New York: John Wiley & Sons. Ovari, M., Csukas, M., & Zaray, G.Y. (2001). Speciation of beryllium, nickel, and V in soil samples from Csepel Island, Hungary. Fresenius Journal of Analytical Chemistry, 370, 768–775. Owolabi, I. A., Mandiwana, K. L., & Panichev, N. (2016). Speciation of Chromium and Vanadium in Medicinal Plants. South African Journal of Chemistry, 69, 67–71. Panichev, N., Mandiwana, K., Moema, D., Molatlhegi, R., & Ngobeni, P. (2006). Distribution of vanadium(V) species between soil and plants in the vicinity of vanadium mine. Journal of Hazardous Materials, 137(2), 649–653. Park, E.J., Lee, G.H., Yoon, C., & Kim, D.W. (2016). Comparison of distribution and toxicity following repeated oral dosing of different V oxide nanoparticles in mice. Environmental Research, 150, 154–165. Pattle Delamore Partners. (2013). Analysis of Soil Samples Using a Portable X–Ray Fluorescence Spectrometry (XRF). Marlborough District Council. Perles, T. (2013). V Market Fundamentals and Implications. Paper presented at the Metal Bulletin 28th International Ferroalloys Conference, Berlin Germany. Perron, L. (2001). V, in Canada Minerals Yearbook: Ottawa, Natural Resources Canada, Minerals & Resources Sector. Poggioli, R., Arletti, R., Bertolini, A., Frigeri, G., & Benelli, A. (2001). Behavioral and developmental outcomes of prenatal and postnatal V exposure in the rat. Pharmacological Research, 43(4), 341–347. Poledniok, J., & Buhl, F. (2003). Speciation of V in soil. Talanta, 59, 1–8. Protasova, N.A., & Kopayeva, M.T. (1985). Trace and dispersed elements in soils of Russian Plateau. Pochvovedeniye, 1, 29–37. Rawlins, B.G., Lister, T.R., & Mackenzie, A. (2002). Trace metal pollution of soils in northern England. Environmental Geology, 42, 612–620. Rauret, G., Lo´pez–Sa´nchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ureb, A., & Quevauvillerc, P.H. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61. Reijonen, I., Metzler, M., & Hartikainen, H. (2016). Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: The underlying basis for risk assessment. Environmental Pollution, 210, 371–379. Sadiq, M. (1988). Thermodynamic solubility relationships of inorganic V in the marine environment. Marine Chemistry, 23(1–2), 87–96. Salminen, R., & Gregorauskiene, V. (2000). Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. Applied Geochemistry, 15, 647–653. Shaheen, S. M., Alessi, D. S., Tack, F. M. G., Ok, Y. S., Kim, K.H., Gustafsson, J. P., Sparks, D. L., & Rinklebe, J. (2019). Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications– A review. Advances in Colloid and Interface Science, 265, 1–13. Shaheen, S. M., & Rinklebe, J. (2018). Vanadium in thirteen different soil profiles originating from Germany and Egypt: Geochemical fractionation and potential mobilization. Applied Geochemistry, 88, 288–301. Shearer, C.K., McKay, G., Papike, J.J., & Karner, J.M. (2006). Valence state partitioning of V between olivine–liquid: estimates of the oxygen fugacity of Y980459 and application to other olivine–phyric martian basalts. American Mineralogist, 91(10), 1657–1663. Smith, M. (2015). Operational and market updates on V. Paper presented at the 31st International Ferroalloys Conference, Prague, Czech Republic. Soil Survey Staff, 1993. Examination and description of soils in the field. Soil Survey Manual. Issued Oct. 1993. Handbook No. 18. USDA–Soil Conservation Service, Washington, D.C., pp. 59–196. Somasundaram, R., Muthuchelian, K., & Murugesan, S. (1994). Inhibition of chlorophyll, protein, photosynthesis, nitrate reductase and nitrate content by V in Oryza Sativa L. Journal of Environmental Biology, 15, 41–48. Sutton, S.R. (2005). V K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochimica et Cosmochimica Acta, 69(9), 2333–2348. Su, T., Shu, S., Shi, H., Wang, J., Adams, C., & Witt, E.C. (2008). Distribution of toxic trace elements in soil/sediment in post–Katrina New Orleans and the Louisiana Delta. Environ Pollut, 156(3), 944–950. Szalay, A., & Szilágyi, M. (1967). The association of V with humic acids. Geochimica et Cosmochimica Acta, 31(1), 1–6. Takeda, A., Kimurab, K., & Yamasaki, S. (2004). Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma, 119, 291–307. Taylor, R., & Giles, J. (1970). The association of V and molybdenum with iron oxides in soils. Soil Science, 21(2), 203–215. Teng, Y., Jiao, X., Wang, J., W., X., & J., Y. (2009). Environmentally geochemical characteristics of vanadium in the topsoil in the Panzhihua mining area, Sichuan Province, China. Chinese Journal of Geochemistry, 28(1), 105–111. Teng, Y., Yang, J., Wang, J., & Song, L. (2011). Bioavailability of V extracted by EDTA, HCl, HOAC, and NaNO3 in topsoil in the Panzhihua Urban Park, located in Southwest China. Biological Trace Element Research, 144, 1394–1404. Thomas, G.W. (1996). Soil pH and soil acidity. In S. DL (Ed.), In Methods of Soil Analysis, Part 3, Chemical Methods (pp. 475–490). Madison, USA ASA and SSSA. Tsadilas, C. D., & Shaheen, S. M. (2010). Distribution of Total and Ammonium Bicarbonate–DTPA–Extractable Soil Vanadium From Greece and Egypt and Their Correlation To Soil Properties. Soil Science, 175(11), pp 535–543. Tume, P., Bech, J., & Longan, L. (2006). Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecological engineering, 27, 145–152. United States Environmental Protection Agency. (1996). Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices (Vol. METHOD 3052). United States Environmental Protection Agency. (2007). Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, And Oils (Vol. Method 3011a). van der Ent, A., Nkrumah, P. N., Tibbett, M., & Echevarria, G. (2019). Evaluating soil extraction methods for chemical characterization of ultramafic soils in Kinabalu Park (Malaysia). Journal of Geochemical Exploration, 196, 235–246. van Zinderen Bakker, E.M., Jaworski, J.F. Effects of Vanadium in the Canadian Environment; NRCC No. 18132, Associate Committee on Scientific Criteria for Environmental Quality. National Research Council of Canada: Ottawa, Ontario, 1980. Wang, D., & Wilhelmy, S.A. Sañudo. (2009). V speciation and cycling in coastal waters. Marine Chemistry, 117(1–4), 52–58. Wang J.F., & LIU Z. (1999). Effect of vanadium on the growth of soybean seedlings. Plant and Soil, 216(1–2), 47–51. Wanty, R.B., & Goldhaber, M.B. (1992). Thermodynamics and kinetics of reactions involving V in natural systems: accumulation of V in sedimentary rocks. Geochimica et Cosmochimica Acta, 56, 1471–1483. Wear, J. I., & Evans, C. E. (1968). Relationship of Zinc Uptake by Corn and Sorghum to Soil Zinc Measured by Three Extractants1. Soil Science Society of America Journal, 32(4), 543–546. Wehrli, B., & Stumm, W. (1989). Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation. Geochimica et Cosmochimica Acta, 53(1), 69–77. Wehrli, B., & Stumm, W. (1988). Oxygenation of vanadyl(IV) effect of coordinated surface hydroxyl groups and hydroxide ion. Langmuir, 4(3), 753–758. Welch, R.M., & Cary, E.E.. Concentration of chromium, nickel, and vanadium in plant materials. Journal of Agricultural and Food Chemistry, 23(3), 479–482. Wells, C.F., & Kuritsyn, L.V. (1970). Kinetics of oxidation of quinol by aquoV(V) ions in perchlorate media. Journal of the Chemical Society A, 8, 1372–1376. Wisawapipat, W., & Kretzschmar, R. (2017). Solid Phase Speciation and Solubility of V in Highly Weathered Soils. Environmental Science & Technology, 51, 8254–8262. Wong, J., Lytle, F. W., Messmer, R. P., & Maylotte, D. H. (1984). K–edge absorption spectra of selected vanadium compounds. Physical Review B, 30(10), 5596–5610. Woolson, E. A., Axley, J. H., & Kearney, P. C. (1971). Correlation between Available Soil Arsenic, Estimated by Six Methods, and Response of Corn (Zea mays L.)1. Soil Science Society of America Journal, 35, 101–105. World Health Organization, 1988. Vanadium. In Environmental Health Criteria. International Programme on Chemical Safety. vol. 81. International Labour Organization, Geneva. Xu, Y.H., Huang, J.H., & Brandl, H. (2016). An optimised sequential extraction scheme for evaluation of V mobility in soils. Journal of Environmental Sciences, 53, 173–183. Yang, J. (2014). Leaching characteristics of Vinmine tailings and soils near a V titanomagnetite mining site. Journal of Hazardous Materials, 264, 498–504. Yang, J., Liu, J., Dynes, J.J., Peak, D., Regier, T., Wang, J., Zhu, S., Shi, J., & Tse, J.S. (2014). Speciation and distribution of copper in a mining soil using multiple synchrotron–based bulk and microscopic techniques. Environmental Science and Pollution Research, 21, 2943–2954. Yang, J., Teng, Y., Wu, J., Chen, H., Wang, G., Song, L., Yue, W., Zuo, R., & Zhai, Y. (2017). Current status and associated human health risk of V in soil in China. Chemosphere, 171, 635–643. Yay, O.D., Alagha, O., & Tuncel, G. (2008). Multivariate statistics to investigate metal contamination in surface soil. Journal of Environmental Management, 86, 581–594. Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 42, 501–511. Zhang, C., Fay, D., McGrath, D., Grennan, E., & Carton, O. T. (2008). Statistical analyses of geochemical variables in soils of Ireland. Geoderma, 146, 378–390. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7270 | - |
| dc.description.abstract | 2001到2017年間,全球工業中釩的需求量增加超過一倍,如此迅速成長的釩需求也成為環境品質以及人類健康的潛在威脅。然而,關於釩的地質化學方面的知識仍十分薄弱。因此,本研究欲利用17個採集自臺灣不同母質 (板岩、砂頁岩互層、安山岩、玄武岩以及蛇紋岩) 之土壤剖面進行釩全面性的探討,包含其來源、潛在移動性、剖面中的分佈以及生物有效性。結果顯示,由ICP-AES測定氫氟酸消化後之供試土樣中總釩濃度為35.4-475 mg/kg其平均值為182 mg/kg,其中,玄武岩母質的土樣中總釩濃度遠高於其餘土樣。此外,風化程度並未對總釩濃度有顯著影響。攜帶式X射線螢光光譜儀之測定結果顯示其在土樣中釩的快速檢測具有高度實用性。BCR序列萃取結果指出,供試土樣中的釩主要固定於礦物晶格中,然而鐵錳氧化物結合態的釩也佔有可觀的比例。利用DCB萃取法以及電子探針顯微分析儀,本研究更進一步證實釩在母質以及風化後的土壤中皆具有高度親鐵性。釩的X射線吸收近邊緣結構圖譜顯示在供試土樣中釩的主要化學物種V(IV) (VO2+) 和V(V) (H2VO4-),此兩者皆可有效地被NaHCO3所萃取。以小白菜 (Brassica rapa var. chinensis) 進行之盆栽試驗顯示NaHCO3土壤釩萃取量和植物地上部之釩吸收量呈顯著正相關,此結果同時證明,釩潛在的生物有效性可由包含土壤總釩濃度以及土壤酸鹼值之多變因回歸等式計算而出。 | zh_TW |
| dc.description.abstract | The global vanadium (V) demand in industry increased over 100% from 2001 to 2017, thus the burgeoning V demand leads to potential risks to environment quality and human health. However, there is still a knowledge gap in pedogeochemical aspect of V. This study attempted to explore the sources, fractionation, profile distribution, and bioavailability of V from 17 soil pedons with 94 horizon samples in Taiwan. These pedons were derived from different parent materials including slate, sandstone interstratified with shale, andesite, basalt, and serpentine. The total V content was measured by using ICP-AES followed with HF-digestion and portable x-ray fluorescence (pXRF). The total V content by ICP-AES in the soils ranged from 35.4 to 475 mg/kg with an average level of 182 mg/kg. Moreover, the total V content in the basalt-derived soils was much higher than those of other parent materials. Nevertheless, the weathering degree of soil did not clearly affect the V level among soils. Furthermore, the pXRF showed high practicality in rapid V determination. The Commission of the European Communities Bureau of Reference (BCR) selective sequential extraction (SSE) method indicated V was primarily fixed in the mineral lattices. However, the Fe/Mn-oxide-bound fraction was remarkably observed. The siderophilic affinity of V in parent materials and derived soils was further confirmed by the dithionite-citrate-bicarbonate (DCB)-extractable Fe and element mapping conducted with electron probe X-ray microanalyzer (EPMA). V(IV) (VO2+) and V(V) (H2VO4-) were the dominant species of V in the soils demonstrated by the V K-edge X-ray absorption near edge structure (XANES) spectra, while both can be efficiently extracted by NaHCO3 extraction to predict a better bioavailability of V than CaCl2, HCl, and EDTA. The plant assay conducted with Chinese cabbage (Brassica rapa var. chinensis) revealed the soil NaHCO3 extractable V positively and significantly correlated with the plant shoot uptake of V, supporting the potentially bioavailable V can be computed by using multivariate regression equation considering the soil total V and pH. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:40:49Z (GMT). No. of bitstreams: 1 ntu-108-R05623038-1.pdf: 2355713 bytes, checksum: 1c70b8f70e00a0ff12ce24da481d4e0f (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要............. i
Abstract ii Contents iv List of Tables vii List of Figures viii Chapter 1 Background 1 Chapter 2 Introduction 3 2.1. Chemical characteristics of vanadium 3 2.2. Application of vanadium in industry 3 2.3. Biological toxicity of vanadium 4 2.4. Vanadium in soils 6 2.4.1. Natural background 6 2.4.2. Anthropogenic sources 9 2.4.3. Geochemical fractions of V in soils 10 2.4.4. Sorption of vanadium 11 2.4.5. Vanadium speciation in soils 12 2.4.6. Bioavailability of soil vanadium 14 2.5. Aims of this study 17 Chapter 3 Materials and methods 18 3.1. Sample source 18 3.2. Soil sampling 21 3.3. Physical and chemical analysis 21 3.3.1. Water content 21 3.3.2. Particle size analysis 21 3.3.3. Soil pH 23 3.3.4. Organic C (OC) 23 3.3.5. Total element content 24 3.4. Geochemical fractions 25 3.5. Dithionite–citrate–bicarbonate (DCB) extraction of Fe, Al, Mn and V 26 3.6. Spatial distribution of soil vanadium 26 3.7. Valence of soil vanadium 27 3.8. Bioavailability of soil vanadium 28 3.8.1. Single extraction 28 3.8.2. Pot experiment 29 3.8.3. Vanadium content in plant shoot 30 3.10. Quality assurance and quality control 30 3.11. Statistical analysis 31 Chapter 4 Results and discussions 32 4.1. Soil physicochemical characteristics 32 4.2. Total vanadium contents 38 4.3. Geochemical fractions of vanadium 44 4.4. Spatial distribution of soil vanadium 51 4.5. Valence of soil vanadium 53 4.6. Bioavailability of soil vanadium 55 4.7. Multivariate regression of independent parameters 63 Chapter 5 Conclusions 64 Chapter 6 References 65 Appendix 1 80 Appendix 2 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | X射線吸收近邊緣結構圖譜 | zh_TW |
| dc.subject | 土壤母質 | zh_TW |
| dc.subject | 電子探針顯微分析儀 | zh_TW |
| dc.subject | 生物有效性 | zh_TW |
| dc.subject | 序列萃取 | zh_TW |
| dc.subject | XANES | en |
| dc.subject | sequential extraction | en |
| dc.subject | parent material | en |
| dc.subject | EPMA | en |
| dc.subject | bioavailability | en |
| dc.title | 釩在臺灣不同類型土壤的分佈與有效性評估 | zh_TW |
| dc.title | Assessment of vanadium distribution and availability in different types of soil in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳尊賢(Zueng-Sang Chen),田村憲司(Kenji Tamura),山路?子(Keiko Yamaji),山下祐司(Yuji Yamashita) | |
| dc.subject.keyword | 生物有效性,電子探針顯微分析儀,土壤母質,序列萃取,X射線吸收近邊緣結構圖譜, | zh_TW |
| dc.subject.keyword | bioavailability,EPMA,parent material,sequential extraction,XANES, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201902117 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-07-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-07 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 2.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
