Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72667
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorYu-Hsuan Nianen
dc.contributor.author粘育瑄zh_TW
dc.date.accessioned2021-06-17T07:03:10Z-
dc.date.available2019-07-31
dc.date.copyright2019-07-31
dc.date.issued2019
dc.date.submitted2019-07-29
dc.identifier.citation[1] Y. Tokura and N. Nagaosa, Orbital physics in transition-metal oxides, SCIENCE 288, 462-468 (2000).
[2] P. Zubko, S. Gariglio, M. Gabay, P. Ghosez and J.M. Triscone, Interface Physics in Complex Oxide Heterostructures, Annual Review of Condensed Matter Physics 2, 141-165 (2011).
[3] S.M. Wu, Shane A. Cybart, P. Yu, M. D. Rossell , J. X. Zhang , R. Ramesh and R. C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device, Nature Material 9, 756-761 (2010).
[4] M. Nord, P. E. Vullum, M. Moreau, J. E. Boschker, S. M. Selbach, R. Holmestad, and T. Tybell, Structural phases driven by oxygen vacancies at the La0.7Sr0.3MnO3/SrTiO3 hetero-interface, Applied Physics Letters 106, (2015).
[5] C.P. Chang, M.W. Chu, H.T. Jeng, S.L. Cheng, J.G. Lin , J.R. Yang and C.H. Chen, Condensation of two-dimensional oxide-interfacial charges into one-dimensional electron chains by the misfit-dislocation strain field, Nature Communication 5, 3522 (2014).
[6] P.W. Lee, V.N. Singh, G.Y. Guo, H.J. Liu, J.C. Lin, Y.H. Chu, C.H. Chen and M.W. Chu, Hidden lattice instabilities as origin of the conductive interface between insulating LaAlO3 and SrTiO3, Nature Communication 7, 12773 (2016).
[7] J. Chakhalian, J. W. Freeland, G. Srajer, J. Strempferi, G. Khaliuillin, J. C. Cezar, T. Charlton, R. Dalgliesh, C. Bernhard, G. Cristiani, H.U. Habermeier and B. Keimer, Magnetism at the interface between ferromagnetic and superconducting oxides, Nature Physics 2, 244-248 (2006).
[8] S. Yunoki, A. Moreo, S. Okamoto, S. S. Kancharla,E. Dagotto, and A. Fujimori, Electron doping of cuprates via interfaces with manganites, Physical Review B 76, 064532 (2007).
[9] Mannhart, J. and Schlom, Oxide interfaces—an opportunity for electronics, SCIENCE 327, 1607-1611 (2010).
[10] A. Tebano, C. Aruta, S. Sanna, P. G. Medaglia, G. Balestrino, A. A. Sidorenko, R. De Renzi, G. Ghiringhelli, L. Braicovich, V. Bisogni and N. B. Brooke,. Evidence of orbital reconstruction at interfaces in ultrathin La0.67Sr0.33MnO3 films, Physical Review Letter 100, 137401 (2008).
[11] L. F. Kourkoutis, J. H. Song, H. Y. Hwang and D. A. Muller, Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers, Proceeding of the National Academy of Science USA 107, 11682-11685 (2010).
[12] Zhaoliang Liao, Fengmiao Li, Peng Gao, Lin Li, Jiandong Guo, Xiaoqing Pan, R. Jin, E. W. Plummer, and Jiandi Zhang,. Origin of the metal-insulator transition in ultrathin films of La2/3Sr2/3MnO3, Physical Review B 92, 125123 (2015).
[13] S. I. Khartsev, P. Johnsson and A. M. Grishin, Colossal magnetoresistance in ultrathin epitaxial La0.75Sr0.25MnO3 films, Journal of Applied Physics 87, 2394-2399 (2000).
[14] Y. Hikita, M. Nishikawa, T. Yajima and H. Y. Hwang, Termination control of the interface dipole inLa0.7Sr0.3MnO3/Nb:SrTiO3(001) Schottky junctions, Physical Review B 79, 073101 (2009).
[15] M. Minohara, R. Yasuhara, H. Kumigashira and M. Oshima, Termination layer dependence of Schottky barrier height forLa0.6Sr0.4MnO3/Nb:SrTiO3heterojunctions, Physical Review B 81, 235322 (2010).
[16] R. T. Tung, E. R. Recent advances in Schottky barrier concepts, Materials Science and Engineering: R: Reports, 2001 - Elsevier 35, 1-138 (2001).
[17] H. Fujishiro, T. Fukase,& M. Ikebe, Charge ordering and sound velocity anomaly in La 1-x Sr x MnO3 (x≥ 0.5), Journal of the Physical Society of Japan 67, 2582-2585 (1998).
[18] M. Izumi, Y. Ogimoto, T. Manako, M. Kawasaki and Y. Tokura, Interface Effect and Its Doping Dependence in La1-x Sr x MnO3/SrTiO3 Superlattices, Journal of the PhysicalSociety of Japan 71, 2621-2624 (2002).
[19] L. W. Martin, Y. H. Chu,and R. Ramesh,Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films, Materials Science and Engineering: R: Reports 68, 89-133 (2010).
[20] C.P. Chang, J. G. Lin, H. T. Jeng, S.L. Cheng, W. F. Pong, Y. C. Shao, Y. Y. Chin, H.J. Lin, C. W. Chen, J.R. Yang, C. H. Chen and M.W. Chu, Atomic-scale observation of a graded polar discontinuity and a localized two-dimensional electron density at an insulating oxide interface, Physical Review B 87, (2013).
[21] D. A. Muller, Structure and bonding at the atomic scale by scanning transmission electron microscopy, Nature Material 8, 263-270 (2009).
[22] L. A. Grunes, R. D. Leapman, C. N. Wilker, R. Hoffmann and A. B. Kunz, OxygenKnear-edge fine structure: An electron-energy-loss investigation with comparisons to new theory for selected3dTransition-metal oxides, Physical Review B 25, (1982).
[23] A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Misfit strain accommodation in epitaxialABO3perovskites: Lattice rotations and lattice modulations, Physical Review B 83, 064101 (2011).
[24] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica 32, 751-767 (1976).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72667-
dc.description.abstract隨著對高空間解析度分析材料結構需求增加,掃描穿透式電子顯微鏡(Scanning transmission electron microscope, STEM)為不可或缺的重要研究工具。利用掃描穿透式電子顯微鏡結合電子損失能譜(Electron energy-loss spectroscopy, EELS),可以同時得到材料的電子結構與原子級影像。
在本研究中,我們應用掃描穿透式電子顯微鏡結合電子損失能譜研究La0.7Sr0.3MnO3(10u.c.)/SrTiO3與La0.7Sr0.3MnO3(5u.c.)/SrTiO3,在室溫下分別為金屬性與絕緣性。原子級尺度的電子結構分析顯示二維電子存在於La0.7Sr0.3MnO3(10u.c.)/SrTiO3。然而,La0.7Sr0.3MnO3(5u.c.)/SrTiO3沒有電荷累積於介面上。此外,我們也討論La0.7Sr0.3MnO3/SrTiO3結構的特性與蕭基特位能障(Schottky barrier ) La0.7Sr0.3MnO3(10u.c.)/SrTiO3之間的關聯性。
zh_TW
dc.description.abstractWith the increasing demand in structural and electronic characterizations at high spatial resolution, atomically-resolved scanning transmission electron microscope (STEM) has become an indispensable tool in modern materials research. When used in combination with electron energy-loss spectroscopy (EELS) that reflects the electronic features of unoccupied density of states, a simultaneous tackling of the structural and electronic characters at atomic resolution had been proven possible and this conjunct STEM-EELS technique is most suitable for addressing the physics at a reduced dimension. In this thesis, we apply the STEM-EELS to the heterostructural system of La0.7Sr0.3MnO3/SrTiO3 with the La0.7Sr0.3MnO3 thickness of 5 and 10 unit cells, respectively. Notably, the 5 (10) unit-cell La0.7Sr0.3MnO3 film is insulating (conductive) at room temperature, whereas the corresponding bulk is characteristically metallic. The atomic-scale electronic characterization revealed the existence of a two-dimension electron density in the conductive 10-unit-cell La0.7Sr0.3MnO3/SrTiO3. In comparison, the 5-unit-cell counterpart displays a missing charge density as expected for an insulating interface. The profound structure-property interplay in the heterostructures were discussed and the reported Schottky barrier in a metallic La0.7Sr0.3MnO3/SrTiO3 heterostructure was also tackled.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:03:10Z (GMT). No. of bitstreams: 1
ntu-108-R06245003-1.pdf: 4775902 bytes, checksum: d4bc6b5b5ef86511726df248418f36d4 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄 3
圖目錄 5
表目錄 9
摘要 10
Abstract 11
第一章簡介 13
1.1 前言 13
1.2 研究動機 14
第二章 材料介紹 18
2.1 晶體結構 18
2.2 電子結構 18
2.3 鑭鍶錳氧的相圖 20
第三章 實驗原理 22
3.1 電子和樣品的交互作用-電子散射 22
3.2 形變(Strain) 23
3.3 擴散作用(Interdiifusion) 23
3.4 X光繞射原理 24
第四章 實驗技術介紹 28
4.1 STEM影像 28
4.2 STEM-EELS介紹 30
4.3 X光粉末繞射 34
第五章 實驗數據分析與討論 35
5.1電性量測 36
5.2 ADF影像分析 37
5.3原子位移分析 41
5.4 STEM-EELS分析 46
第六章 結論 58
參考文獻 59
dc.language.isozh-TW
dc.subject掃描穿透式電子顯微鏡zh_TW
dc.subject蕭基特位能障zh_TW
dc.subject氧化物異質介面zh_TW
dc.subject電子能量損失能譜zh_TW
dc.subject鑭鍶錳氧zh_TW
dc.subjectSchottky barrieren
dc.subjectscanning transmission electron microscopyen
dc.subjectLa0.7Sr0.3MnO3en
dc.subjectoxide heterointerfaceen
dc.subjectelectron energy-loss spectroscopyen
dc.title"利用掃描穿透式電子顯微鏡結合電子能量損失能(La,Sr)MnO3/SrTiO3氧化物異質介面之研究"zh_TW
dc.titleStudy of (La,Sr)MnO3/SrTiO3 Oxide Interfaces by Scanning Transmission Electron Microscopy Combined with Electron Energy-Loss Spectroscopyen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor朱明文(Ming-Wen Chu)
dc.contributor.oralexamcommittee朱英豪(Ying-Hao Chu),郭光宇(Guang-Yu Guo)
dc.subject.keyword掃描穿透式電子顯微鏡,電子能量損失能譜,氧化物異質介面,鑭鍶錳氧,蕭基特位能障,zh_TW
dc.subject.keywordscanning transmission electron microscopy,electron energy-loss spectroscopy,oxide heterointerface,La0.7Sr0.3MnO3,Schottky barrier,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201902115
dc.rights.note有償授權
dc.date.accepted2019-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
Appears in Collections:應用物理研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
4.66 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved