請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72661完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信樹(Hsin-Shu Chen) | |
| dc.contributor.author | Tzu-Yu Huang | en |
| dc.contributor.author | 黃子育 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:03:01Z | - |
| dc.date.available | 2026-01-01 | |
| dc.date.copyright | 2021-03-11 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2021-01-14 | |
| dc.identifier.citation | [1] Tom Van Breussegem and Michiel Seyaert “CMOS Integrated Capacitive DC-DC Converters,” 2013. [2] Tun-Yen Liao “Reconfigurable Switched-Capacitor DC-DC Converter with Adaptive Switch Modulation and Frequency Scaling Techniques,” Nov. 2019. [3] Hanh-Phuc Le, Seth R. Sanders, and Elad Alon, “Design Techniques for Fully Integrated Switched-Capacitor DC-DC Converters,” IEEE Journal of Solid-State Circuits, Volume: 46, Issue: 9, Sept. 2011. [4] Dina El-Damak, Saurav Bandyopadhyay, Anantha P. Chandrakasan “A 93% Efficiency Reconfigurable Switched-Capacitor DC-DC Converter Using On-Chip Ferroelectric Capacitors,” in International Solid-State Circuits Conf., pp. 374–375, Nov. 2013. [5] Suyoung Bang, David Blaauw, Dennis Sylvester “A Successive-Approximation Switched-Capacitor DC-DC Converter with Resolution of VIN/2N for a Wide Range of Input and Output Voltages,” IEEE Journal of Solid-State Circuits, Volume: 46, Issue: 9, Sept. 2016 [6] Yield and Speed Optimization of a Latch-Type Voltage Sense Amplifier IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 7, JULY 2004 Bernhard Wicht, Member, IEEE, Thomas Nirschl, and Doris Schmitt-Landsiedel, Member, IEEE [7] M. D. Seeman, “A Design Methodology for Switched-Capacitor DC-DC converters,” EECS Dept., UC Berkeley Univ., Berkeley, CA, USA, 2009. [8] Da-Long Ming, Yu-Huei Lee and Ke-Horng Chen “A High-Efficiency Adaptive Frequency Hopping Controlled 1/3x Step-Down Switch Capacitor DC-DC Converter with Deep-Green Mode Operation,” IEEE International Symposium on Circuits and Systems, 2012 [9] Hans Meyvaert, Gerard Villar Piqué, Ravi Karadi, Henk Jan Bergveld, and Michiel Steyaert, “A Light-Load-Efficient 11/1 Switched-Capacitor DC-DC Converter with 94.7% Efficiency While Delivering 100mW at 3.3V,” in Proc. IEEE Int. Solid-State Circuits Conf, Jan. 2015, pp. 358–359. [10] Hassan Saif, Yongmin Lee, Minsun Kim, Hyeonji Lee, Muhammad Bilawal Khan, and Yoonmyung Lee, “A Wide Load and Voltage Range Switched-Capacitor DC-DC Converter with Load-Dependent Configurability for DVS Implementation in Miniature Sensors,” IEEE Asian Solid-State Circuits Conference, Nov. 2017. [11] Morteza Hokmabadi and Mohammad Taherzadeh-Sani, “An 80%-Efficiency Switched-Capacitor Step-Down DC-DC Converter with Switch-Width and Digital Capacitance Modulation,” Iranian Conference on Electrical Engineering (ICEE), 2016. [12] Wei-Chung Chen, Da-Long Ming, Yi-Ping Su, Yu-Huei Lee, and Ke-Horng Chen, “A Wide Load Range and High-Efficiency Switched-Capacitor DC-DC Converter with Pseudo-Clock Controlled Load-dependent Frequency,” IEEE Tractions on circuits and systems, I: regular papers, VOL. 61, NO. 3, March 2014. [13] Suyoung Bang, Jae-sun Seo, Leland Chang, David Blaauw, and Dennis Sylvester, “A Low Ripple Switched-Capacitor Voltage Regulator Using Flying Capacitance Dithering,” IEEE Journal of Solid-State Circuits, Vol. 51, No.4, April 2016. [14] Gudlavalleti Rajahari, Yashu Anand Varshney and Subash Chandra Bose, “A Novel Design Methodology for High Tuning Linearity and Wide Tuning Range Ring Voltage Controlled Oscillator,” CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan, India, pp. 10-18, 2013. [15] Yu-Hsuan Chiang and Shen-Iuan Liu, “Nanopower CMOS Relaxation Oscillators With Sub-100 ppm/◦C Temperature Coefficient,” IEEE Tractions on circuits and Systems—II, VOL. 61, No. 9, September 2014. [16] T. Van Breussegem et al., “A fully integrated gearbox capacitive DC/DC converter in 90nm CMOS: Optimization, control and measurements,” IEEE Control and Modeling for Power Electronics (COMPEL), June 2010. [17] Y. K. Ramadass, A. A. Fayed, and A. P. Chandrakasan, “A fully-integrated switched-capacitor step-down dc-dc converter with digital capacitance modulation in 45 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2557–2565, Dec. 2010. [18] S. S. Kudva, R. Harjani, “Fully Integrated Capacitive DC-DC Converter with All-Digital Ripple Mitigation Technique,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1910–1920, Aug. 2013. [19] L. G. Salem et al., “An 85%-efficiency fully integrated 15-ratio recursive switched-capacitor DC-DC converter with 0.1-to-2.2V output voltage range,” IEEE ISSCC Dig. Tech. Papers, pp. 88-89, Feb. 2014. [20] Junmin Jiang, Yan Lu, Cheng Huang, Wing-Hung Ki, Philip K. T. Mok1, “A 2-/3-Phase Fully Integrated Switched-Capacitor DC-DC Converter in Bulk CMOS for Energy-Efficient Digital Circuits with 14% Efficiency Improvement,” ISSCC Papers, pp. 366–367, Feb. 2015. [21] Nicolas Butzen, Michiel Steyaert, “A 1.1W/mm2-Power-Density 82%-Efficiency Fully Integrated 3:1 Switched-Capacitor DC-DC Converter in Baseline 28nm CMOS Using Stage Outphasing and Multiphase Soft-Charging,” ISSCC Papers, pp. 178–179, Feb. 2017. [22] Nicolas Butzen, Michiel Steyaert, “A 1.1W/mm2-Power-Density 82%-Efficiency Fully Integrated 3:1 Switched-Capacitor DC-DC Converter in Baseline 28nm CMOS Using Stage Outphasing and Multiphase Soft-Charging,” ISSCC Papers, pp. 178–179, Feb. 2017. [23] D. El-Damak, S. Bandyopadhyay, and A. P. Chandrakasan, “A 93% efficiency reconfigurable switched-capacitor DC-DC converter using on-chip ferroelectric capacitors,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 374–375. [24] Nicolas Butzen and Michiel Steyaert, “MIMO Switched-Capacitor Converter using only Parasitic Capacitance with Scalable Parasitic Charge Redistribution,” in Proc. IEEE ESSCIRC Conf., pp. 445–448, Nov. 2016. [25] Y. Lu, J. Jiang, and W.-H. Ki, “A multiphase switched-capacitor DC-DC converter ring with fast transient response and small ripple,” IEEE J. Solid-State Circuits, vol. 52, no. 2, pp. 579–591, Feb. 2017. [26] J. Delos, T. Lopez, E. Alarcn, and M. A. M. Hendrix, “On the modeling of switched capacitor converters with multiple outputs,” in 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, March 2014, pp. 2796–2803. [27] H. Meyvaert, G. V. Pique, R. Karadi, H. J. Bergveld, and M. S. J. Steyaert, “A Light-Load-Efficient 11/1 Switched-Capacitor DC-DC Converter with 94.7% Efficiency While Delivering 100 mW at 3.3 V,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2849–2860, Dec 2015. [28] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System-level analysis of fast, per-core DVFS using on-chip switching regulators,” in Proc. IEEE 14th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2008, pp. 123–134. [29] T. Andersen et al., “A 10 W on-chip switched-capacitor voltage regulator with feedforward regulation capability for granular microprocessor power delivery,” IEEE Trans. Power Electron., vol. 32, no. 1, 2017, DOI: 10.1109/TPEL.2016.2530745. [30] L. G. Salem and P. P. Mercier, “A recursive switched-capacitor DC-DC converter achieving 2N -1 ratios with high efficiency over a wide output voltage range,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2773–2787, Dec. 2014. [31] H. Meyvaert, T. Van Breussegem, and M. Steyaert, “A 1.65 W Fully Integrated 90 nm Bulk CMOS Capacitive DC-DC Converter With Intrinsic Charge Recycling,” IEEE Trans. Power Electron., vol. 28, No. 9, pp. 4327–4334, Sep. 2013. [32] H.-P. Le, M. D. Seeman, S. R. Sanders, V. Sathe, S. Naffziger, and E. Alon, “A 32 nm fully integrated reconfigurable switched-capacitor DC-DC converter delivering 0.55 W/mm at 81% efficiency,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 210–211. [33] M. Seeman and S. R. Sanders, “Analysis and optimization of switched-capacitor DC-DC converters,” in Proc. 10th IEEE Workshop on Computers in Power Electronics (COMPEL), Jul. 2006, pp. 216–224. [34] K. D. T. Ngo and R. Webster, “Steady-state analysis and design of a switched-capacitor DC-DC,” in Proc. PESC, 1992, vol. 1, pp. 378–385. [35] B. R. Gregoire, “A compact switched capacitor regulated charge pump power supply,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1944–1953, Aug. 2006. [36] B. H. Calhoun and A. P. Chandrakasan, 'Ultra-dynamic voltage scaling using sub-threshold operation and local voltage dithering in 90nm CMOS,' IEEE International Solid-State Circuits Conference, pp. 300-301, Feb. 2005. [37] Y. K. Ramadass and A. P. Chandrakasan, “Minimum Energy Tracking Loop with Embedded DC-DC Converter Delivering Voltages down to 250mV in 65nm CMOS,” IEEE International Solid-State Circuits Conference, pp. 64-65, Feb. 2007. [38] W. Jung, S. Oh, S. Bang, Y. Lee, Z. Foo, G. Kim, Y. Zhang, D. Sylvester, and D. Blaauw, “An Ultra-Low-Power Fully Integrated Energy Harvester Based on Self-Oscillating Switched-Capacitor Voltage Doubler,” IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2800–2811, Dec 2014. [39] Boris Likhterov and Alexander Belenky, “Traveling-Wave Ring Oscillator – a New Architecture for a Transmission Line Based Oscillator,” ISCEE International Conference on the Science of Electrical Engineering, 2016. [40] Long Kong and Behzad Razavi, “A 2.4 GHz 4 mW Integer-N Inductorless RFSynthesizer,” IEEE Journal of Solid-State Circuits, vol. 51, no. 3, March 2016. [41] Chao-Chang Chiu and Kuo-Hsing Cheng, “A Sub-1V Phase-Locked Loop with Constant KVCO Technique,” 2010 [42] Arun Paidimarri, Alice Wang, Gangadhar Burra, and Anantha P. Chandrakasan, “A Relaxation oscillator With Comparator Offset Cancellation,” IEEE Journal of Solid-State Circuits, vol. 51, no. 8, Aug 2016. [43] Khalil Yousef, “A Low Phase Noise, High Figure of Merit, 3.1 GHz – 3.5 GHz Ring Oscillator using Edge Injection Technique,” Japan-Africa Conference on Electronics, Communications and Computers (JAC-ECC) Dec. 2017 [44] Shih-An Yu and Peter Kinget, “A 0.65-V 2.5-GHz Fractional-N Synthesizer With Two-Point 2-Mb/s GFSK Data Modulation,” IEEE Journal of Solid-State Circuits, vol. 4, no. 9, pp. 2411–2425, Sep 2009. [45] Behzad Razavi, “Design of CMOS phase-locked loops,” Publisher, Jan. 2020. [46] Deyun Cai, Haipeng Fu, Junyan Ren, Wei Li, Ning Li, HaoYu and Kiat Seng Yeo “A Dividerless PLL With Low Power and Low Reference Spur by Aperture-Phase Detector and Phase-to-Analog Converter,” IEEE Transaction on Circuit and System, vol 60, No 1, Jan. 2013. [47] T. Tokairin et al., “A 280 nW, 100 kHz, 1-cycle start-up time, on-chip CMOS Relaxation oscillator employing a feedforward period control scheme,” in Proc. Dig. Symp. VLSI Circuits, pp. 16–17, Jun. 2012. [48] Yusuke Tokunaga, Shiro Sakiyama, Shiro Dosho, “An On-Chip CMOS Relaxation Oscillator With Voltage Averaging Feedback,” IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1150–1158, Sep. 2010. [49] K.-J. Hsiao, “A 32.4 ppm/°C 3.2–1.6 V self-chopped Relaxation oscillator with adaptive supply generation,” in Proc. Dig. Symp. VLSI Circuits, pp. 14–15, Jun. 2012. [50] Vincent W. Ng, Seth R. Sanders, “A High-Efficiency Wide-Input-Voltage Range Switched-Capacitor Point-of-Load DC-DC Converter,” IEEE International Solid-State Circuits Conference, Feb. 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72661 | - |
| dc.description.abstract | 隨著物聯網的蓬勃發展,許多應用於物聯網裝置的晶片便順勢而生,此時如何有效率的提供電力給物聯網晶片成為了一項重要的議題,而低成本小體積的直流電壓轉換器是一種非常有競爭力的解決方法,全電容式的直流電壓轉換器因為其體積與功率密度比起電感式的直流電壓轉換器更具有優勢而更有機會達到此需求。在物聯網的應用上,大部分的裝置長時間都處於待機模式(Sleep mode),直流電壓轉換器輕載時的轉換效率大大地影響著產品的使用時間,輕載轉換效率也成為全電容式電壓轉換器設計的難題。 本篇結合適應性開關調變機制和自主優化頻率調變技術,當負載改變時,兩項技術會追蹤負載情況並調整開關大小和時脈產生器的輸出頻率,以達到最高的轉換效率。適應性開關調變機制將開關切分為不同大小,依據當前的負載電流情況來決定要使用的開關大小,有效降低閘極驅動損耗。自主優化頻率調變技術則是依據負載情況改變時脈產生器的輸出頻率,透過此技巧,控制電路的功率耗損在輕載時可以被減輕。在功率級的設計中,當輸入為5V時本篇使用2.5V元件來降低閘極驅動損耗以及開關所需要的整體面積,並利用位準轉換器來確保開關元件不會因為過壓而損壞且具有足夠小的導通阻抗。 透過台積電0.25μm 1P3M High Voltage Mixed Signal CMOS製程實現,這個晶片將5伏特輸入轉換成固定的1.5伏特輸出,負載電流範圍從10微安培(μA)到10豪安培(mA),輸出範圍為1000倍,在瞬間抽載時,暫態反應時間約為0.5μs,最高效率為75%,輕載效率為68%,適應性開關調變機制增進21%整體效率而自主優化頻率調變技術增進42%整體效率當負載電流為10微安培時,在所有的負載電流範圍內效率皆能保持70%左右。 | zh_TW |
| dc.description.abstract | In recent years, IoT (Internet of Things) thrives. Many chips for IoT applications are needed and designed. And the power management IC becomes an important topic for IoT due to its long sleep time. The SC DC-DC converters is a competitive solution for IoT. Its small area cost and power density are more suitable than the use of an inductive DC-DC converter. The long sleep time of IoT applications is the key issue for improving the product lifetime. To achieve high light-load efficiency is a critical problem for the DC-DC converter. This work combines the adaptive switch modulation (ASM) and self-optimized frequency modulation (SFM) technique for maximum efficiency tracking when the load condition changes. ASM technique separates the switches into different sizes. It changes the switches’ sizes depends on the load current condition, which decreases the gate driving loss effectively. SFM technique tracks the load condition and adjusts the output frequency of the clock generators. The control circuit power is reduced through the SFM technique in a light-load condition. The power stage is implemented with 2.5V devices that lessen the gate driving loss and the switches’ area when the input voltage is 5V. The 2.5V devices are used with a level shifter to prevent the junction breakdown and have low on-state resistance switches. This chip is implemented in the TSMC 0.25μm 1P3M High Voltage Mixed-Signal CMOS process. This converter provides a fixed output voltage of 1.5V when the input voltage is 5V. The load current is 10μA~10mA. The output range is 1000 times. The load transient response time is 0.5μs. The peak efficiency is 75%. The light-load efficiency is 68%. ASM technique improves 21% overall efficiency, and SFM technique improves 42% overall efficiency when the load current is 10μA. The efficiency maintains almost 70% in the whole load current range. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:03:01Z (GMT). No. of bitstreams: 1 U0001-1101202112242600.pdf: 4632154 bytes, checksum: 9f57bce7b403b749b65b90c1c6ce3ab3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Motivation 3 1.2 Thesis Organization 5 Chapter 2 Fundamentals Analysis of Switched-Capacitor DC-DC Converter 6 2.1 Introduction 6 2.1.1 Architecture of Switched-Capacitor DC-DC Converter 8 2.1.2 Operation of Switched-Capacitor DC-DC Converter 9 2.2 Modeling of Switched-Capacitor DC-DC Converter 10 2.2.1 Slow Switching Limit Impedance 10 2.2.2 Fast-Switching Limit Impedance 14 2.2.3 Total Output Impedance 15 2.2.4 Gate Driving Loss 17 2.2.5 Parasitic Plate Capacitor Loss 17 2.2.6 Model of Switched-Capacitor DC-DC Converter 20 2.3 Control Technique of Switched-Capacitor DC-DC Converter 21 2.3.1 Pulse Frequency Modulation 21 2.3.2 Capacitance Modulation 24 2.3.3 Pulse Width Modulation 25 2.4 Clock Generator 26 2.4.1 LC Oscillator 28 2.4.2 Ring Oscillator 29 2.4.3 Relaxation Oscillator 31 Chapter 3 Wide-Output-Range Switched-Capacitor DC-DC Converter with Adaptive Switch Modulation and Self-Optimized Frequency Modulation Techniques 33 3.1 Conventional Switched-Capacitor DC-DC Converter 33 3.2 Proposed Wide-Output-Range Switched-Capacitor DC-DC Converter with Adaptive Switch Modulation and Self-Optimized Frequency Modulation Techniques 38 3.2.1 Adaptive Switch Modulation (ASM) 39 3.2.2 Self-Optimized Frequency Modulation (SFM) 41 3.2.3 Operation Principle 44 3.3 Design Goal 46 Chapter 4 Circuit Implementation 47 4.1 Architecture 47 4.1.1 Segmented Power stage 48 4.1.2 Low Voltage MOS Switch with Level Shifter 49 4.1.3 Pulse Frequency Modulation controller 52 4.1.4 Digital-Controlled Ring Oscillator 54 4.1.5 Low Power Relaxation Oscillator 57 4.2 Simulation results 63 4.2.1 Steady-state waveforms 63 4.2.2 Load Transient Response 64 4.2.3 Power efficiency 66 Chapter 5 Measurement Result 68 5.1 Chip Micrograph 68 5.2 Experimental Setup 70 5.3 Experimental Results 72 5.3.1 Steady-State Waveforms 72 5.3.2 Transient Waveforms 75 5.3.3 Power Efficiency 77 5.3.4 Performance Summary 80 Chapter 6 Conclusion and Future Work 84 6.1 Conclusions 84 6.2 Future Work 84 REFERENCE 86 | |
| dc.language.iso | en | |
| dc.subject | 大輸出範圍 | zh_TW |
| dc.subject | 適應性開關調變機制 | zh_TW |
| dc.subject | 自主優化頻率調變技術 | zh_TW |
| dc.subject | 全電容式直流電壓轉換器 | zh_TW |
| dc.subject | Adaptive Switch Modulation Technique | en |
| dc.subject | Switched-Capacitor DC-DC converter | en |
| dc.subject | Self-Optimized Frequency Modulation Technique | en |
| dc.subject | Wide-Output-Range | en |
| dc.title | 使用適應性開關調變與自主優化頻率調變技術且具有大範圍輸出的切換式電容直流轉換器 | zh_TW |
| dc.title | A Wide-Output-Range Switched-Capacitor DC-DC Converter with Adaptive Switch Modulation and Self-Optimized Frequency Modulation Techniques | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文中(Wen-Jung Wu),陳景然(Ching-Jan Chen),劉宗德(Tsung-Te Liu) | |
| dc.subject.keyword | 全電容式直流電壓轉換器,適應性開關調變機制,自主優化頻率調變技術,大輸出範圍, | zh_TW |
| dc.subject.keyword | Switched-Capacitor DC-DC converter,Adaptive Switch Modulation Technique,Self-Optimized Frequency Modulation Technique,Wide-Output-Range, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU202100041 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-01-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1101202112242600.pdf 未授權公開取用 | 4.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
