請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72659完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林彥蓉(Yann-Rong Lin) | |
| dc.contributor.author | Chia-Ching Liou | en |
| dc.contributor.author | 劉佳晴 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:02:59Z | - |
| dc.date.available | 2024-08-07 | |
| dc.date.copyright | 2019-08-07 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-30 | |
| dc.identifier.citation | Abou-Elwafa, S. F., Büttner, B., Chia, T., Schulze-Buxloh, G., Hohmann, U., Mutasa-Göttgens, E., & Müller, A. E. (2011). Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. J Exp Bot, 62(10), 3359-3374.
Amasino, R. (2004). Vernalization, competence, and the epigenetic memory of winter. Plant Cell, 16(10), 2553. Ausín, I., Alonso-Blanco, C., Jarillo, J. A., Ruiz-García, L., & Martínez-Zapater, J. M. (2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet, 36(2), 162-166. Balasubramanian, S., & Weigel, D. (2006). Temperature Induced Flowering in Arabidopsis thaliana. Plant Signal Behav, 1(5), 227-228. Berry, S., & Dean, C. (2015). Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J, 83(1), 133-148. Björkman, T., & Pearson, K. J. (1998). High temperature arrest of inflorescence development in broccoli (Brassica oleracea var. italica L.). J Exp Bot, 49(318), 101-106. Blázquez, M. A., Green, R., Nilsson, O., Sussman, M. R., & Weigel, D. (1998). Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter. Plant Cell, 10(5), 791. Buck, P. A. (1956). Origin and taxonomy of broccoli. Econ Bot, 10(3), 250-253. Capovilla, G., Schmid, M., & Posé, D. (2014). Control of flowering by ambient temperature. J Exp Bot, 66(1), 59-69. Cheng, J.-Z., Zhou, Y.-P., Lv, T.-X., Xie, C.-P., & Tian, C.-E. (2017). Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol Mol Biol Plants, 23(3), 477-485. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I.,& Coupland, G. (2007). FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science, 316(5827), 1030. D.W. Heather, J. B. S., M.H. Dickson, and D.W. Wolfe. (1992). Heat Tolerance and Holding Ability in Broccoli. J Am Soc Hortic Sci, 117(6), 6. Davis, S. J. (2009). Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ, 32(9), 1201-1210. De Lucia, F., Crevillen, P., Jones, A. M. E., Greb, T., & Dean, C. (2008). A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. PNAS, 105(44), 16831-16836. Domagalska, M. A., Schomburg, F. M., Amasino, R. M., Vierstra, R. D., Nagy, F., & Davis, S. J. (2007). Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development, 134(15), 2841. Food and Agricultural Organization [FAO] (2017) Available at: http://www.fao.org/faostat/en/#data/QC/visualize (accessed July 1, 2019) Fornara, F., & Coupland, G. (2009). Plant Phase Transitions Make a SPLash. Cell, 138(4), 625-627. Fornara, F., Panigrahi, K. C. S., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J. A., & Coupland, G. (2009). Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Dev Cell, 17(1), 75-86. Gendall, A. R., Levy, Y. Y., Wilson, A., & Dean, C. (2001). The VERNALIZATION 2 Gene Mediates the Epigenetic Regulation of Vernalization in Arabidopsis. Cell, 107(4), 525-535. He, Y., & Amasino, R. M. (2005). Role of chromatin modification in flowering-time control. Trends Plant Sci, 10(1), 30-35. He, Y., Michaels, S. D., & Amasino, R. M. (2003). Regulation of Flowering Time by Histone Acetylation in Arabidopsis. Science, 302(5651), 1751. Helliwell, C. A., Wood, C. C., Robertson, M., James Peacock, W., & Dennis, E. S. (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J, 46(2), 183-192. Heo, J. B., & Sung, S. (2011). Vernalization-Mediated Epigenetic Silencing by a Long Intronic Noncoding RNA. Science, 331(6013), 76. Higdon, J. V., Delage, B., Williams, D. E., & Dashwood, R. H. (2007). Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res, 55(3), 224-236. Hornyik, C., Terzi, L. C., & Simpson, G. G. (2010). The Spen Family Protein FPA Controls Alternative Cleavage and Polyadenylation of RNA. Dev Cell, 18(2), 203-213. Imaizumi, T. (2010). Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol, 13(1), 83-89. Imaizumi, T., Schultz, T. F., Harmon, F. G., Ho, L. A., & Kay, S. A. (2005). FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of CONSTANS in Arabidopsis. Science, 309(5732), 293. Irwin, J. A., Soumpourou, E., Lister, C., Ligthart, J.-D., Kennedy, S., & Dean, C. (2016). Nucleotide polymorphism affecting FLC expression underpins heading date variation in horticultural brassicas. Plant J, 87(6), 597-605. Kim, D. H., & Sung, S. (2014). Genetic and epigenetic mechanisms underlying vernalization. Arabidopsis Book, 12, e0171-e0171. Kim, D. H., & Sung, S. (2017). Vernalization-Triggered Intragenic Chromatin Loop Formation by Long Noncoding RNAs. Dev Cell, 40(3):302-312. Koornneef, M., Hanhart, C. J., & van der Veen, J. H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet, 229(1), 57-66. Kumar, S. V., Lucyshyn, D., Jaeger, K. E., Alós, E., Alvey, E., Harberd, N. P., & Wigge, P. A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 484, 242. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol, 33(7), 1870-1874. Lagercrantz, U. (1998). Comparative Mapping Between Arabidopsis thaliana and Brassica nigra Indicates That Brassica Genomes Have Evolved Through Extensive Genome Replication Accompanied by Chromosome Fusions and Frequent Rearrangements. Genetics, 150(3), 1217. Lagercrantz, U., & Lydiate, D. J. (1996). Comparative genome mapping in Brassica. Genetics, 144(4), 1903-1910. Lee, J. H., Yoo, S. J., Park, S. H., Hwang, I., Lee, J. S., & Ahn, J. H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev, 21(4), 397-402. Livak K. J. & Schmittgen T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. Li, W., Wang, Z., Li, J., Yang, H., Cui, S., Wang, X., & Ma, L. (2011). Overexpression of AtBMI1C, a Polycomb Group Protein Gene, Accelerates Flowering in Arabidopsis. PLOS ONE, 6(6), e21364. Li, X., Zhang, S., Bai, J., & He, Y. (2016). Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC. Plant Biotech J, 14(3), 905-914. Lim, M.-H., Kim, J., Kim, Y.-S., Chung, K.-S., Seo, Y.-H., Lee, I.& Park, C.-M. (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell, 16(3), 731-740. Lin, H.-H., Lin, K.-H., Chen, S.-C., Shen, Y.-H., & Lo, H.-F. (2015). Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses. Bot Stud, 56(1), 18-18. Lin, Y. R., Lee, J.-Y., Tseng, M.-C., Lee, C.-Y., Shen, C.-H., Wang, C.-S.,& Hwu, K.-K. (2018). Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization-responsive QTLs. Sci Rep, 8(1), 13609. Liu, B., Mao, Q., Wang, X., Zhou, F., Luo, J., Wang, C.,& Xie, L. (2013). Cruciferous Vegetables Consumption and Risk of Renal Cell Carcinoma: A Meta-Analysis. Nutr Cancer, 65(5), 668-676. Liu, F., Quesada, V., Crevillén, P., Bäurle, I., Swiezewski, S., & Dean, C. (2007). The Arabidopsis RNA-Binding Protein FCA Requires a Lysine-Specific Demethylase 1 Homolog to Downregulate FLC. Mol Cell, 28(3), 398-407. Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K.,& Dean, C. (1997). FCA, a Gene Controlling Flowering Time in Arabidopsis, Encodes a Protein Containing RNA-Binding Domains. Cell, 89(5), 737-745. Mark, W. F., & Thomas, B. (2011). Breeding Vegetables Adapted to High Temperatures: A Case Study with Broccoli. HortScience horts, 46(8), 1093-1097. Moon, J., Suh, S.-S., Lee, H., Choi, K.-R., Hong, C. B., Paek, N.-C.,& Lee, I. (2003). The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J, 35(5), 613-623. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 8(19), 4321-4325. Nagaharu, U. (1935). Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap J Bot, 7, 389-452. United States Department of Agriculture [USDA] Food Cpmposition Database (2018). Available at: https://ndb.nal.usda.gov/ndb/ [accessed July 3,2019] Okazaki, K., Sakamoto, K., Kikuchi, R., Saito, A., Togashi, E., Kuginuki, Y.,& Hirai, M. (2007). Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor Appl Genet, 114(4), 595-608. Parkin, I. A. P., Gulden, S. M., Sharpe, A. G., Lukens, L., Trick, M., Osborn, T. C., & Lydiate, D. J. (2005). Segmental Structure of the Brassica napus Genome Based on Comparative Analysis With Arabidopsis thaliana. Genetics, 171(2), 765. Parr, B., Bond, J. K., & Minor, T. (2019). Vegetables and Pulses Outlook of US. USDA, ERS, VGS-362. Posé, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G. C.,& Schmid, M. (2013). Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature, 503, 414. Prelich, G. (2012). Gene Overexpression: Uses, Mechanisms, and Interpretation. Genetics, 190(3), 841. Putterill, J., Robson, F., Lee, K., Simon, R., & Coupland, G. (1995). The CONSTANS gene of arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 80(6), 847-857. Rae, A. M., Howell, E. C., & Kearsey, M. J. (1999). More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity, 83(5), 586-596. Razi, H., Howell, E. C., Newbury, H. J., & Kearsey, M. J. (2008). Does sequence polymorphism of FLC paralogues underlie flowering time QTL in Brassica oleracea? Theor Appl Genet, 116(2), 179-192. Ridge, S., Brown, P. H., Hecht, V., Driessen, R. G., & Weller, J. L. (2015). The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development. J Exp Bot, 66(1), 125-135. Robzyk, K., Recht, J., & Osley, M. A. (2000). Rad6-Dependent Ubiquitination of Histone H2B in Yeast. Science, 287(5452), 501. Sanchez-Bermejo, E., Zhu, W., Tasset, C., Eimer, H., Sureshkumar, S., Singh, R.,& Balasubramanian, S. (2015). Genetic Architecture of Natural Variation in Thermal Responses of Arabidopsis. Plant Physiol, 169(1), 647. Sawa, M., Nusinow, D. A., Kay, S. A., & Imaizumi, T. (2007). FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science, 318(5848), 261. Schranz, M. E., Quijada, P., Sung, S.-B., Lukens, L., Amasino, R., & Osborn, T. C. (2002). Characterization and Effects of the Replicated Flowering Time Gene FLC in Brassica rapa. Genetics, 162(3), 1457. Sheldon, C. C., Conn, A. B., Dennis, E. S., & Peacock, W. J. (2002). Different Regulatory Regions Are Required for the Vernalization-Induced Repression of FLOWERING LOCUS C and for the Epigenetic Maintenance of Repression. Plant Cell, 14(10), 2527. Sheldon, C. C., Hills, M. J., Lister, C., Dean, C., Dennis, E. S., & Peacock, W. J. (2008). Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. PNAS, 105(6), 2214. Sheldon, C. C., Rouse, D. T., Finnegan, E. J., Peacock, W. J., & Dennis, E. S. (2000). The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). PNAS, 97(7), 3753-3758. Simpson, G. G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol, 7(5), 570-574. Simpson, G. G., Dijkwel, P. P., Quesada, V., Henderson, I., & Dean, C. (2003). FY Is an RNA 3’ End-Processing Factor that Interacts with FCA to Control the Arabidopsis Floral Transition. Cell, 113(6), 777-787. Smyth, D. R. (1995). Flower Development: Origin of the cauliflower. Curr Biol, 5(4), 361-363. Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci, 68(12), 2013-2037. Sun, Z.-W., & Allis, C. D. (2002). Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature, 418(6893), 104-108. Sung, S., & Amasino, R. M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 427(6970), 159-164. Sung, S., & Amasino, R. M. (2005). REMEMBERING WINTER: Toward a Molecular Understanding of Vernalization. Annu Rev Plant Biol, 56(1), 491-508. Suwabe, K., Iketani, H., Nunome, T., Ohyama, A., Hirai, M., & Fukuoka, H. (2004). Characteristics of Microsatellites in Brassica rapa Genome and their Potential Utilization for Comparative Genomics in Cruciferae. Breeding Sci, 54(2), 85-90. Tadege, M., Sheldon, C. C., Helliwell, C. A., Stoutjesdijk, P., Dennis, E. S., & Peacock, W. J. (2001). Control of flowering time by FLC orthologues in Brassica napus. Plant J, 28(5), 545-553. Thomas, H. (2013). Senescence, ageing and death of the whole plant. New Phytol, 197(3), 696-711. Threapleton, D. E., Greenwood, D. C., Evans, C. E. L., Cleghorn, C. L., Nykjaer, C., Woodhead, C.,& Burley, V. J. (2013). Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ, 347, f6879. Wang, J.-W. (2014). Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot, 65(17), 4723-4730. Wang, J.-W., Czech, B., & Weigel, D. (2009). miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell, 138(4), 738-749. Wilson, R. N., Heckman, J. W., & Somerville, C. R. (1992). Gibberellin Is Required for Flowering in;Arabidopsis thaliana under Short Days. Plant Physiol, 100(1), 403. Wu, Q. J., Yang, Y., Vogtmann, E., Wang, J., Han, L. H., Li, H. L., & Xiang, Y. B. (2012). Cruciferous vegetables intake and the risk of colorectal cancer: a meta-analysis of observational studies. Ann Oncol, 24(4), 1079-1087. Xi, X., Wei, K., Gao, B., Liu, J., Liang, J., Cheng, F.,& Wu, J. (2018). BrFLC5: a weak regulator of flowering time in Brassica rapa. Theor Appl Genet, 131(10), 2107-2116. Xu, L., Zhao, Z., Dong, A., Soubigou-Taconnat, L., Renou, J.-P., Steinmetz, A., & Shen, W.-H. (2008). Di- and Tri- but Not Monomethylation on Histone H3 Lysine 36 Marks Active Transcription of Genes Involved in Flowering Time Regulation and Other Processes in Arabidopsis thaliana. Mol Cell Biol, 28(4), 1348. Yuan, Y.-X., Wu, J., Sun, R.-F., Zhang, X.-W., Xu, D.-H., Bonnema, G., & Wang, X.-W. (2009). A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot, 60(4), 1299-1308. Zhao, J., Kulkarni, V., Liu, N., Del Carpio, D. P., Bucher, J., & Bonnema, G. (2010). BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J Exp Bot , 61(6), 1817-1825. Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W., & Chua, N.-H. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protoc, 1(2), 641-646. Zhao, Z., Yu, Y., Meyer, D., Wu, C., & Shen, W.-H. (2005). Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nature Cell Biol, 7(12), 1256-1260. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72659 | - |
| dc.description.abstract | 青花菜 (Brassica oleracea var italica) 為全球及臺灣重要蔬菜之一,在臺灣青花菜的生產季節為十一月到隔年四月,為了在半年產季增加青花菜產量,早生青花菜是青花菜育種目標之一。為了輔助早生青花菜育種,了解影響青花菜開花時間之分子機制,有助於以青花菜開花時間之重要基因作為分子標誌來輔助育種。BoFLC3為先前本實驗室針對臺灣非春化型青花菜開花時間進行數量性狀圖譜基因座分析 (QTL mapping) 所發現之開花候選基因之一,先前探勘臺灣青花菜種原間BoFLC3的基因型,不同基因型其開花時間有差異,因此推測此基因為影響臺灣青花菜開花時間之基因。在來自QTL mapping早晚親之BoFLC3兩對偶基因間,其intron I有255 bp之indel多型性,且有三個胺基酸變異,為了證實此基因功能是否與阿拉伯芥AtFLC一樣扮演著開花抑制子,以及為了瞭解三個胺基酸變異是否影響開花時間,將兩對偶基因分別構築在過表現35S promoter後,過表現於wild type Arabidopsis (Col-0),結果顯示,過表現兩個對偶基因皆延遲阿拉伯芥開花時間,證實BoFLC3與阿拉伯芥FLC功能相似,為抑制開花之基因。另外,兩BoFLC3對偶基因間其啟動子區間有兩段大片段的Indel多型性,一片段為244 bp,另一片段為678 bp,將兩對偶基因啟動子區間結合GUS蛋白,測試兩對偶基因啟動子活性,結果顯示,帶有兩大插入片段之BoFLC3-1啟動子,呈現較低的活性,推測插入片段降低BoFLC3表現,而使BoFLC3抑制開花效果下降,呈現早開花性狀。最後為了進一步瞭解BoFLC3對青花菜開花時間影響程度,產生青花菜boflc3突變株,觀察突變對青花菜開花時間影響,於本研究先建立穩定青花菜轉殖系統,以用於基因編輯技術。此BoFLC3基因功能研究期待將BoFLC3開發成分子標誌,輔助不同開花期的青花菜育種,而進一步得以幫助產季調節。 | zh_TW |
| dc.description.abstract | Broccoli (Brassica oleracea var. italica) is one of the important vegetables in the world. Understanding the molecular mechanism of broccoli flowering time can assist the breeding of broccoli with various flowering time for shift production. BoFLC3 has been shown to be associated with the flowering time of non-vernalization type broccolis by the linkage analysis and candidate gene approach. BoFLC3 alleles of late-flowering and early-flowering inbred lines exhibited 3 amino acid substitutions and a 255-bp indel polymorphism in intron I. To validate the function of BoFLC3 conferring flowering time, the full-length genomic DNA of the two BoFLC3 alleles were constructed after 35S promoter and then transformed to an ecotype Arabidopsis, Col-0. The overexpression of both two BoFLC3 alleles postponed flowering initiation, revealed that BoFLC3 played a similar role as AtFLC in inhibition of flowering time and both two BoFLC3 alleles were functional. In addition, promoter assays of two BoFLC3 alleles exhibited 244-bp and 678-bp indel polymorphisms were measured to reveal the importance of these two indels on promoter regions on the expression of BoFLC3. The two insertions in the BoFLC3-1 allele had relative lower promoter activity, implying less repression effect of BoFLC3 on FT associated with earlier flowering than the BoFLC3-2 allele. Furthermore, a stable transformation system of broccoli was established for further characterizing the function of BoFLC3 in broccoli by overexpression and/or genome editing. This study sheds light on the manipulation of BoFLC3 on the breeding of non-vernalization type broccoli with various flowering time to adjust production for food resilience. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:02:59Z (GMT). No. of bitstreams: 1 ntu-108-R05621107-1.pdf: 3486748 bytes, checksum: 33f021283bf25475a5d9d6725bb708f3 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Content
Abstract I Abstract (in Chinese) 中文摘要 III Table Content VII Figure Content VIII Preface 1 Chapter 1. Literature Review 6 1.1 Introduction of broccoli 6 1.2 Flowering pathways in Arabidopsis 7 1.2.1 The Six Flowering pathways 8 1.2.2 Regulation of flowering by vernalization 11 1.2.3 Regulation of flowering by ambient temperature 14 1.2.4 The autonomous pathway of flowering regulation 15 1.3 FLC genes in Brassica crops 17 1.4 The aims of the study 19 Chapter 2. Plant Materials and Methods 21 2.1 Plant materials 21 2.2 Identification of BoFLC3 alleles 22 2.3 Gene expression 23 2.4 Plasmid construction 24 2.5 Arabidopsis transformation 28 2.6 GUS staining 28 2.7 Broccoli transformation 29 Chapter 3. Results 30 3.1 The gene structure of BoFLC3 alleles 30 3.2 Verification for overexpression and promoter assay constructions 34 3.3 Flowering time of BoFLC3 overexpression lines 39 3.4 Gene expression in BoFLC3 overexpression lines 45 3.5 The promoter activity of two BoFLC3 alleles 51 3.6 Broccoli transformation system 53 Chapter 4. Discussion 61 4.1 Allelic diversification of BoFLC3 61 4.2 Days to flowering time in proportion to BoFLC3 expression levels 62 4.3 The effects of overexpressed BoFC3 on AtFLC and AtFT expression 64 4.4 The sequence variation of promoter regions of BoFLC3 affecting flowering time 65 4.5 Conclusion 67 Chapter 5. Reference 68 Chapter 6. Supplementary data 75 Table S1. Top 10 broccoli and cauliflower production countries 75 Table S2. The list of BoFLC3 sequencing and construction primers 76 Table S3. The list of BoFLC3 sequencing and construction primers 77 Table S4. The predicted cis-elements in the 244-bp insertion of BoFLC3-1 promoter. 78 Table S5. The predicted cis-elements in the 678-bp insertion of BoFLC3-1 promoter. 79 Fig. S 1 The flowering time and AtFLC expression levels of wild type Col Arabidopsis and SALK_140021 atflc mutant line. 82 Fig. S 2 BoFLC3 and BoFLC2 genotype of commercial broccoli cultivars. 83 | |
| dc.language.iso | en | |
| dc.subject | 青花菜 | zh_TW |
| dc.subject | 開花時間 | zh_TW |
| dc.subject | FLOWERING LOCUS C 基因 (FLC) | zh_TW |
| dc.subject | 甘藍 BoFLC3 | zh_TW |
| dc.subject | 非春化型 | zh_TW |
| dc.subject | non- vernalization | en |
| dc.subject | broccoli | en |
| dc.subject | FLOWERING LOCUS C (FLC) | en |
| dc.subject | flowering time | en |
| dc.subject | BoFLC3 | en |
| dc.title | 青花菜非春化調控開花基因BoFLC3之功能性研究 | zh_TW |
| dc.title | Functional Characterization of the Non-vernalization Responsive Flowering Gene, BoFLC3, in Broccoli
(Brassica oleracea var. italica) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪傳揚(Chwan-Yang Hong),羅筱鳳(Hsiao-Feng Lo),曾鈺茜(Yu-Chien Tseng) | |
| dc.subject.keyword | 青花菜,開花時間,FLOWERING LOCUS C 基因 (FLC),甘藍 BoFLC3,非春化型, | zh_TW |
| dc.subject.keyword | broccoli,flowering time,FLOWERING LOCUS C (FLC),BoFLC3,non- vernalization, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201902054 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
