請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72633完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳哲夫(Jeffrey D. Ward) | |
| dc.contributor.author | Pin-Hsun Huang | en |
| dc.contributor.author | 黃品勛 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:02:21Z | - |
| dc.date.available | 2019-08-16 | |
| dc.date.copyright | 2019-08-16 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-30 | |
| dc.identifier.citation | [1] Chu, K. T.; Cadoret, L.; Yu, C. C.; Ward, J. D. A new shortcut design method and economic analysis of divided wall columns. Ind. Eng. Chem. Res. 2011, 50 (15), 9221−9235.
[2] Dejanović, I.; Matijašević, Lj.; Halvorsen, I. J.; Skogestad, S.; Jansen, H.; Kaibel, B.; Olujić, Ž. Designing four-product dividing wall columns for separation of a multicomponent aromatics mixture. Chem.Eng. Res. Des. 2011, 89, 1155−1167. [3] Dejanović, I.; Matijasevic, Lj.; Olujic, Z. Dividing wall column application to platformate splittera case study. 20th European Symposium on Computer Aided Process Engineering; Elsevier:Amsterdam, 2010; pp 655−660. [4] Yildirim, O.; Kiss, A. A.; Kenig, E. Y. Dividing wall columns in chemical process industry: A review on current activities. Sep. Purif. Technol. 2011, 80, 403−417. [5] Anton A. Kiss, David J-.P.C. Suszwalak, Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns, Sep. Purif. Technol. 2012, 86, 70-78 [6] Shi. P. Y., Xu. D. M., Ding. J. F., Wu. J. Y., Ma. Y. X., Gao. J., Wang. Y. L., Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol+water) via heterogeneous azeotropic distillation by energy-saving dividing-wall column: Process design and control strategies, Che. Eng. Res. Des. 2018, 135, 52-66. [7] Dai. X., Ye. Q., Qin. J. W., Yu. H., Suo. X. M., Li. R., Energy-saving dividing-wall column design and control for benzene extraction distillation via mixed entrainer, Chem. Eng. Process. 2016, 100, 49-64. [8] Wang. S. J., Wong. D. S.H., Controllability and energy efficiency of a high-purity divided wall column, Chem. Eng. Sci., 2007, 62, 1010-1025. [9] Hernandez, S.; Jimenez, A., Design of energy-efficient Petlyuk systems. Comput. Chem.Eng. 1999, 23, 1005–1010. [10] Wolff, E. A.; Skogestad, S., Operation of Integrated 3-Product (Petlyuk) ()Distillation-Columns. Ind. Eng. Chem. Res. 1995, 34, 2094–2103. [11] Glinos, K.; Malone, M. F., Optimality Regions for Complex Column Alternatives in Distillation Systems. Chem. Eng. Res. Des. 1988, 66, 229–240. [12] Schultz, M. A.; Stewart, D. G.; Harris, J. M.; Rosenblum, S. P.; Shakur, M. S.; O'Brien, D. E., Reduce costs with dividing-wall columns. Chem. Eng. Prog. 2002, 98, 5, 64–71. [13] Halvorsen, I.J.S. Skogestad, Minimum energy consumption in multicomponent distillation. 2. Three-product Petlyuk arrangements. Ind. Eng. Chem. Res. 2003, 42, 605–615. [14] Fidkowski, Z.; Krolikowski, L., Thermally Coupled System of Distillation-Columns Optimization Procedure. AIChE J. 1986, 32, 537–546. [15] Fidkowski, Z.; Krolikowski, L., Minimum Energy-Requirements of Thermally Coupled Distillation Systems. AIChE J. 1987, 33, 643–653. [16] Triantafyllou, C.; Smith, R. The design and optimization of fully thermally coupled distillation columns. Chem. Eng. Res. Des. 1992, 70, 118−132. [17] Ramirez-Corona, N.; Jimenez-Gutierrez, A.; Castro-Aguero, A.;Rico-Ramırez, V. Optimum design of Petluk and divided-wall distillation systems using a shortcut model. Chem. Eng. Res. Des. 2010, 88, 1405−1418. [18] Amminudin, K.A.; R. Smith; D.Y.C. Thong G.P. Towler, Design and optimization of fully thermally coupled distillation columns part 1: Preliminary design and optimization methodology. Chem. Eng. Res. Des. 2001, 79, 701–715. [19] Benyounes, H.; Benyahia, K.; Shen, W.; Gerbaud, V.; Dong, L.; Wei, S. Novel procedure for assessment of feasible design parameters of dividing-wall columns: Application to non-azeotropic mixture. Ind. Eng. Chem. Res. 2015, 54, 5307−5317. [20] Y. Wang; G. Bu; T. Wang; T. Zhao; Z. Zhang; Z. Zhu. Application of A Simulated Annealing Algorithm to Design and Optimize a Pressure-Swing Distillation Process. Computer & Chemical Engineering 2016, 95, 91-107. [21] Cheng, J.-K; Lee, H.-Y; Huang H.-P; Yu C.-C. Optimal steady-state design of reactive distillation processes using simulated annealing. Journal of the Taiwan Institute of Chemical Engineers 2009, 40, 188-196. [22] Cardoso. M. F., Salcedo. R. L., Azevedo. S. F. D., Barbosa. D., Optimization of reactive distillation processes with simulated annealing. Chem. Eng. Sci. 2000, 55, 5059-5078 [23] F. I. Gómez-Castro; J. G. Segovia-Hernández; S. Hernández; C. Gutiérrez-Antonio; A. Briones-Ramírez. Dividing Wall Distillation Columns: Optimization and Control Properties. Chemical Engineering & Technology 2008, 31, 1246-1260. [24] Boozarjomehry R. B.; A. Pourahmadi Laleh; W. Y. Svrcek. Evolutionary Design of Optimum Distillation Column Sequence. The Canadian Journal of Chemical Engineering 2012, 90, 956-972. [25] Seider, W. D.; Seader, J. D.; Lewin, D. R., Product & Process Design Principles: Synthesis, Analysis and Evaluation, (with CD). 3 ed.; John Wiley & Sons: 2009. [26] Aspen Plus User Guide Version 10.2 [27] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by Simulated Annealing. Science 1983, 220, 671-680. [28] William L. Luyben. Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers and Chemical Engineering 50 (2013) 1– 7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72633 | - |
| dc.description.abstract | 此篇論文探討的主要是利用MATLAB程式語言與化工程序模擬程式Aspen Plus的結合應用來最適化隔牆塔系統。自動化伺服器提供MATLAB和Aspen Plus之間的溝通橋樑,使原本得手動操作調整Aspen Plus參數的最適化程序得以加速,讓最適化程序能在極短時間內能完成。另外,本篇嵌入模擬退火法(SAA)來作為程式語言端最佳化程序的框架。模擬退火法有別於傳統最適化的方法。此法不須模擬各種可能組合來尋找最適化解,而是利用概率性的接受新狀態的特性,達到跳脫區域及小值來尋找最小值。
隔牆塔(DWC)是一種用來分離多成分混合物的系統。有別於一般塔序列分離,隔牆塔可達到節省能源以及設備成本的特性。但由於隔牆塔的設計實不容易,在重建前人研究過程發現無法達到理想狀態。故本篇利用自動化伺服器介面可以連接程式語言以及模擬系統的特性,利用Aspen Plus內真實參數系統建構的模型來代替傳統經驗式來估計蒸餾塔內氣液流量。此方法套用在乙醇/丙醇/正丁醇系統以及苯/甲苯/乙苯系統,皆可以完整估計出隔牆塔的設計參數。最後,此研究利用模擬退火法來最適化上述隔牆塔的兩個系統。 | zh_TW |
| dc.description.abstract | Divided wall columns (DWCs) are complicated systems for separating multicomponent mixtures. The design of DWCs is more difficult than traditional distillation columns because there are many degrees of freedom. Previous methods developed for designing DWC based on empirical equations do not always work well. Therefore, a new shortcut design method is developed. Aspen Plus simulation and Window-based interface for connecting Aspen Plus and Matlab are used to calculate a preliminary design of DWCs. After that, a stochastic optimization method, a simulated annealing algorithm, is utilized to optimize the system. This algorithm has the characteristic of being a probabilistic technique that can slowly decrease of the probability of accepting worse solution and search for the global optimum solution. This method is applied to optimization problems of two DWC systems and the three types of DWC systems are compared to find which of it is the most economical process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:02:21Z (GMT). No. of bitstreams: 1 ntu-108-R05524002-1.pdf: 6131533 bytes, checksum: 68a65f4626eb611213d46da7786d3584 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents v List of Figures viii List of Tables xi 1. Introduction 1 1.1. Overview 1 1.2. Literature survey 3 1.3. Motivation 6 1.4. Thesis organization 7 2. Method 8 2.1. Shortcut design for DWCM 8 2.1.1. External flow rate calculation 11 2.1.2. Internal flow rate calculation 13 2.1.3. Design of DWCM 16 2.2. New shortcut design for DWCU 20 2.2.1. Relative volatility 21 2.2.2. Minimum vapor flow rate 22 2.2.3. Minimum number of trays 26 2.2.4. Design of DWCU 29 2.3. New shortcut design for DWCL 32 2.3.1. Minimum vapor flow rate 34 2.3.2. Minimum number of trays 36 2.3.3. Design of DWCL 38 2.4. Vacuum system 42 2.5. Aspen Plus Active X automation server 44 2.6. Variable explorer to search path of variables 46 2.7. Simulated annealing algorithm (SAA) 47 2.7.1. Introduction of SAA 47 2.7.2. SA parameters 51 3. Application 55 3.1. Divided wall column – ethanol/propanol/n-butanol (EPB) case study 55 3.1.1. Overview 55 3.1.2. DWCL (divided wall placed in a lower position of the column) 56 3.1.3. DWCU (divided wall placed in a higher position of the column) 68 3.1.4. DWCM (divided wall placed in the middle position of the column) 77 3.2. Divided wall column – benzene/toluene/ethyl-benzene (BTE ) case study 83 3.2.1. Overview 83 3.2.2. BTE DWCL 84 3.2.3. BTE DWCU 93 3.2.4. BTE DWCM 101 Conclusions 106 Reference 108 Appendix A: Nomenclature 113 Appendix B: MATLAB code 116 Appendix C: Total annual cost calculation 121 | |
| dc.language.iso | en | |
| dc.subject | 模擬退火 | zh_TW |
| dc.subject | 隔牆塔 | zh_TW |
| dc.subject | 自動化伺服器 | zh_TW |
| dc.subject | 最適化 | zh_TW |
| dc.subject | optimization | en |
| dc.subject | shortcut design method | en |
| dc.subject | simulated annealing algorithm | en |
| dc.subject | automation server | en |
| dc.subject | divided wall columns | en |
| dc.title | 利用新捷徑方法計算隔牆塔之設計參數並以模擬退火法最適化 | zh_TW |
| dc.title | Shortcut Design of Divided Wall Columns and Optimization Using Simulated Annealing Algorithm | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 錢義隆(I-Lung Chien),陳誠亮(Cheng-Liang Chen),郭文生(Vincentius Surya Kurnia Adi),李豪業(Hao-Yeh Lee) | |
| dc.subject.keyword | 模擬退火,隔牆塔,自動化伺服器,最適化, | zh_TW |
| dc.subject.keyword | divided wall columns,shortcut design method,optimization,simulated annealing algorithm,automation server, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU201902215 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 5.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
