Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72624
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 吳世雄 | |
dc.contributor.author | Yan-Fen Jhou | en |
dc.contributor.author | 周彥棻 | zh_TW |
dc.date.accessioned | 2021-06-17T07:02:10Z | - |
dc.date.available | 2024-08-02 | |
dc.date.copyright | 2019-08-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-30 | |
dc.identifier.citation | 1.Chikalovets, I.V. et al. A lectin with antifungal activity from the mussel Crenomytilus grayanus. Fish Shellfish Immunol. 42, 503–507 (2015).
2.Liao, J. H. et al. A multivalent marine lectin from Crenomytilus grayanus possesses anti-cancer activity through recognizing globotriose Gb3. J. Am. Chem. Soc. 138, 4787–4795 (2016). 3.Kovalchuk, S. et al. Mutagenesis studies and structure-function relationships for GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus. Mar. Drugs 16, (2018). 4.Belogortseva, N. I., Molchanova, V. I., Kurika, A.V., Skobun, A. S. &Glazkova, V. E. Isolation and characterization of new GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus. Comp. Biochem. Physiol. - C Pharmacol. Toxicol. Endocrinol. 119, 45–50 (1998). 5.Chikalovets, I.V. et al. A new Gal/GalNAc-specific lectin from the mussel Mytilus trossulus: structure, tissue specificity, antimicrobial and antifungal activity. Fish Shellfish Immunol. 50, 27–33 (2016). 6.García-Maldonado, E., Cano-Sánchez, P. &Hernández-Santoyo, A. Molecular and functional characterization of a glycosylated galactose-binding lectin from Mytilus californianus. Fish Shellfish Immunol. 66, 564–574 (2017). 7.Terada, D. et al. Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types. Sci. Rep. 6, 1–11 (2016). 8.Fujii, Y. et al. A lectin from the mussel Mytilus galloprovincialis has a highly novel primary structure and induces glycan-mediated cytotoxicity of globotriaosylceramide-expressing lymphoma cells. J. Biol. Chem. 287, 44772–44783 (2012). 9.Kovalchuk, S. N. et al. cDNA cloning and structural characterization of a lectin from the mussel Crenomytilus grayanus with a unique amino acid sequence and antibacterial activity. Fish Shellfish Immunol. 35, 1320–1324 (2013). 10.Jakób, M., Lubkowski, J., O’Keefe, B. R. &Wlodawer, A. Structure of a lectin from the sea mussel Crenomytilus grayanus (CGL). Acta Crystallogr. Sect. Struct. Biol. Commun. 71, 1429–1436 (2015). 11.Chernikov, O., Kuzmich, A., Chikalovets, I., Molchanova, V. &Hua, K. F. Lectin CGL from the sea mussel Crenomytilus grayanus induces Burkitt’s lymphoma cells death via interaction with surface glycan. Int. J. Biol. Macromol. 104, 508–514 (2017). 12.Chernikov, O.V. et al. A GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus modulates immune response in macrophages and in mice. Sci. Rep. 7, 1–14 (2017). 13.Vo, T. S. &Kim, S. K. Potential anti-HIV agents from marine resources: An overview. Mar. Drugs 8, 2871–2892 (2010). 14.Heimburg-Molinaro, J., Song, X., Smith, D. F. &Cummings, R. D. Preparation and analysis of glycan microarrays. Current Protocols in Protein Science (2011). doi:10.1002/0471140864.ps1210s64 15.Stowell, S. R. et al. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283, 10109–10123 (2008). 16.Connie M., A. et al. Examining galectin binding specificity using glycan microarrays. Methods Mol Biol. 1207, 115–131 (2015). 17.Gao, H. F. et al. Overexpressed N-fucosylation on the cell surface driven by FUT3, 5, and 6 promotes cell motilities in metastatic pancreatic cancer cell lines. Biochem. Biophys. Res. Commun. 511, 482–489 (2019). 18.Li, M. F. et al. Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: An open-label, multicenter, randomized controlled trial. J. Hematol. Oncol. 10, 1–10 (2017). 19.Tadokoro, T. et al. Preferential reduction of the α-2-6-sialylation from cell surface N-glycans of human diploid fibroblastic cells by in vitro aging. Glycoconj. J. 23, 443–452 (2006). 20.Hatakeyama, T., Murakami, K., Miyamoto, Y. &Yamasaki, N. An assay for lectin activity using microtiter plate with chemically immobilized carbohydrates. Anal. Biochem. 237, 188–192 (1996). 21.Wu, A. M. et al. Recognition factors of Ricinus communis agglutinin 1 (RCA1). Mol. Immunol. 43, 1700–1715 (2006). 22.Chandrasekaran, E.V. et al. Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans a. Glycoconj. J. 33, 819–836 (2016). 23.Wang, Y. et al. Specificities of Ricinus communis agglutinin 120 interaction with sulfated galactose. FEBS Lett. 585, 3927–3934 (2011). 24.Itakura, Y. et al. Systematic comparison of oligosaccharide specificity of Ricinus communis agglutinin I and Erythrina lectins: a search by frontal affinity chromatography. J. Biochem. 142, 459–469 (2007). 25.Song, X. et al. A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J. Biol. Chem. 286, 31610–31622 (2011). 26.Alagarsamy Lakku Reddia, Kannan Sankaranarayanan, Harold Stephen Arulraj, Niranjali Devaraj, H. D. Enzyme-linked PNA lectin-binding assay of serum T-antigen in patients with SCC of the uterine cervix. Cancer Lett. 149, 207–211 (2000). 27.Couzens, L. et al. An optimized enzyme-linked lectin assay to measure influenza a virus neuraminidase inhibition antibody titers in human sera. J. Virol. Methods 210, 7–14 (2014). 28.Amano, M. et al. Tumour suppressor p16INK4a - Anoikis-favouring decrease in N/O-glycan/cell surface sialylation by down-regulation of enzymes in sialic acid biosynthesis in tandem in a pancreatic carcinoma model. FEBS J. 279, 4062–4080 (2012). 29.Martin Young, N., VanFaassen, H., Watson, D. C. &Mackenzie, C. R. Specificity analysis of the C-type lectin from rattlesnake venom, and its selectivity towards Gal- or GalNAc-terminated glycoproteins. Glycoconj. J. 28, 427–435 (2011). 30.Dumont, F., Nardelli, J. &Cancerology, E. Peanut agglutinin ( PNA ) -binding properties of murine thymocyte subpopulations. Immunology 37, (1979). 31.Sharma, V. &Surolia, A. Molecular basis of recognition by Gal / GalNAc specific legume lectins : influence of Glu 129 on the specificity of peanut agglutinin ( PNA ) towards C2-substituents of galactose. Glycobiol. vol. 8, 1007–1012 (1998). 32.Hennigar, L. M., Hennigar, R. A. &Schulte, B. A. Histochemical Specificity of β -galactose binding lectins from Arachis hypogaea ( Peanut ) And Ricinus communis (castor bean). Stain Technol. 62, (1987). 33.Swamy, M. J., Gupta, D., Mahanta, S. K. &Surohat, A. Further characterization of the saccharide specificity of peanut ( Arachis hypogaea ) agglutinin. Curbohycirate Res. 213, 59–67 (1991). 34.Reuben Lotan, Ehud Skutelsky, D. D. and N. S. The purification, composition, and specificity lectin of the anti-T from Peanut ( Arachis hypogaea ). J. Biol. Chem. 250, 8518–8523 (1975). 35.Chacko, B. K. &Appukuttan, P. S. Peanut (Arachis hypogaea) lectin recognizes α-linked galactose, but not N-acetyl lactosamine in N-linked oligosaccharide terminals. Int. J. Biol. Macromol. 28, 365–371 (2001). 36.Wu, A. M. et al. Differential affinities of Erythrina cristagalli lectin ( ECL ) toward monosaccharides and polyvalent mammalian structural units. Glycoconj J 24, 591–604 (2007). 37.Iskratsch, T., Braun, A., Paschinger, K. &Wilson, I. B. H. Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal. Biochem. 386, 133–146 (2009). 38.Chang, W. W., Yu, C. Y., Lin, T. W., Wang, P. H. &Tsai, Y. C. Soyasaponin I decreases the expression of α2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells. Biochem. Biophys. Res. Commun. 341, 614–619 (2006). 39.Kirkeby, S. &Moe, D. Lectin interactions with α-galactosylated xenoantigens. Xenotransplantation 9, 260–267 (2002). 40.Wu, M., Wu, J. H., Song, S. &Elvin, A. Bandeiraea ( Griffonia ) simplicifolia lectin-I , isolectin A4 , reacting with Tn ( GalNAcαl -Ser / Thr ) or galabiose ( Galal-4Gal ) containing ligands. FEBS Lett. 398, 183–186 (1996). 41.Bull, C. et al. Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Mol. Cancer Ther. 12, 1935–1946 (2013). 42.Lamminmäki, U. et al. Role of lectin microarrays in cancer diagnosis. Proteomics 16, 1257–1265 (2016). 43.Kraemer, P. M. Sialic acid of mammalian cell lines. J. Cell. Physiol. 67, 23–34 (1966). 44.Schauer, R. Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499 (2000). 45.Almagro-Moreno, S. &Boyd, E. F. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol. Biol. 9, 1–16 (2009). 46.Varki, A. Sialic acids in human health and disease. Trends Mol Med. 14, 351–360 (2008). 47.Lehmann, F., Tiralongo, E. &Tiralongo, J. Sialic acid-specific lectins: occurrence, specificity and function. Cell. Mol. Life Sci. 63, 1331–1354 (2006). 48.Ilver, D. et al. Bacterium-host protein-carbohydrate interactions. Methods Enzymol. 363, 134–157 (2003). 49.Vimr, E. R., Kalivoda, K. A., Deszo, E. L. &Steenbergen, S. M. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 68, 132–53 (2004). 50.Lee, M., Lee, H.-J., Bae, S. &Lee, Y.-S. Protein sialylation by sialyltransferase involves radiation resistance. Mol. Cancer Res. 6, 1316–1325 (2008). 51.Ashwell, G. &Harford, J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51, 531–554 (1982). 52.Hwa-Chun Lin &Yung-Hua Chu. Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim. Biophys. Acta 1572, 341–363 (2002). 53.Crespo, H. J. et al. Effect of sialic acid loss on dendritic cell maturation. Immunology 128, (2009). 54.Meesmann, H. M. et al. Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J. Cell Sci. 123, 3347–3356 (2010). 55.Huang, Y. X. et al. Human red blood cell aging: correlative changes in surface charge and cell properties. J. Cell. Mol. Med. 15, 2634–2642 (2011). 56.Grozovsky, R., Giannini, S. &Hoffmeister, K. M. Regulating billions of blood platelets : glycans and beyond. Blood 126, 1877–1885 (2015). 57.Huang, Y. X. et al. Restoring the youth of aged red blood cells and extending their lifespan in circulation by remodelling membrane sialic acid. J. Cell. Mol. Med. 20, 294–301 (2016). 58.Li, J. et al. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat. Commun. 6, (2015). 59.Tao, L. et al. Platelet desialylation correlates with efficacy of first-line therapies for immune thrombocytopenia. J. Hematol. Oncol. 10, 10–13 (2017). 60.Sakuma, K., Aoki, M. &Kannagi, R. Transcription factors c-Myc and CDX2 mediate E-selectin ligand expression in colon cancer cells undergoing EGF/bFGF-induced epithelial-mesenchymal transition. Proc. Natl. Acad. Sci. 109, 7776–7781 (2012). 61.Dalziel, M., Dall’Olio, F., Mungul, A., Piller, V. &Piller, F. Ras oncogene induces β-galactoside α2,6-sialyltransferase (ST6Gal I) via a RalGEF-mediated signal to its housekeeping promoter. Eur. J. Biochem. 271, 3623–3634 (2004). 62.Maupin, K. A. et al. Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems. PLoS One 5, (2010). 63.Cui, H., Lin, Y., Yue, L., Zhao, X. &Liu, J. Differential expression of the α2,3-sialic acid residues in breast cancer is associated with metastatic potential. Oncol. Rep. 25, 1365–1371 (2011). 64.Swindall, A. F. &Bellis, S. L. Sialylation of the Fas death receptor by St6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J. Biol. Chem. 286, 22982–22990 (2011). 65.Park, J. J. et al. Sialylation of epidermal growth factor receptor regulates receptor activity and chemosensitivity to gefitinib in colon cancer cells. Biochem. Pharmacol. 83, 849–857 (2012). 66.Shewell, L. K. et al. Detection of N-glycolylneuraminic acid biomarkers in sera from patients with ovarian cancer using an engineered N-glycolylneuraminic acid-specific lectin SubB2M. Biochem. Biophys. Res. Commun. 507, 173–177 (2018). 67.Wang, P. et al. Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi. Sci. Rep. 7, 1–13 (2017). 68.Wang, Y. C., Peterson, S. E. &Loring, J. F. Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res. 24, 143–160 (2014). 69.vanTol, W., Wessels, H. &Lefeber, D. J. O-glycosylation disorders pave the road for understanding the complex human O-glycosylation machinery. Curr. Opin. Struct. Biol. 56, 107–118 (2019). 70.Wopereis, S., Lefeber, D. J., Morava, É. &Wevers, R. A. Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: A review. Clin. Chem. 52, 574–600 (2006). 71.Tailford, L. E., Crost, E. H., Kavanaugh, D. &Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 5, (2015). 72.You, X., Qin, H. &Ye, M. Recent advances in methods for the analysis of protein o-glycosylation at proteome level. J. Sep. Sci. 41, 248–261 (2018). 73.Gundry, R. L. et al. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol. (2009). doi:10.1002/0471142727.mb1025s88 74.Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 101, 17033–17038 (2004). 75.Disney, M. D. &Seeberger, P. H. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol. 11, 1701–1707 (2004). 76.Gavériaux, C. &Loor, F. An enzyme-linked lectin-binding assay on cells (CELLBA) for the comparison of lectin receptor expression on cell surfaces. J. Immunol. Methods 104, 173–182 (1987). 77.McCoy, J. P., Varani, J. &Goldstein, I. J. Enzyme-linked lectin assay (ELLA). II. Detection of carbohydrate groups on the surface of unfixed cells. Exp. Cell Res. 151, 96–103 (1984). 78.Cao, Z. et al. Modulation of glycan detection on specific glycoproteins by lectin multimerization. Anal Chem. 85, 1689–1698 (2013). 79.Srinivasan, K. et al. A quantitative microtiter assay for sialylated glycoform analyses using lectin complexes. J. Biomol. Screen. 20, 768–778 (2015). 80.Briard, J. G., Jiang, H., Moremen, K. W., MacAuley, M. S. &Wu, P. Cell-based glycan arrays for probing glycan-glycan binding protein interactions. Nat. Commun. 9, 1–11 (2018). 81.Purohit, S. et al. Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat. Commun. 9, (2018). 82.Santos, S. P. et al. Thermofluor-based optimization strategy for the stabilization and crystallization of Campylobacter jejuni desulforubrerythrin. Protein Expr. Purif. 81, 193–200 (2012). 83.DeTitta, G. T., Nordlund, P., Dekker, N., Ericsson, U. B. &Hallberg, B. M. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 357, 289–298 (2006). 84.Reinhard, L., Mayerhofer, H., Geerlof, A., Mueller-Dieckmann, J. &Weiss, M. S. Optimization of protein buffer cocktails using Thermofluor. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69, 209–214 (2013). 85.Seabrook, S. A. &Newman, J. High-throughput thermal scanning for protein stability: Making a good technique more robust. ACS Comb. Sci. 15, 387–392 (2013). 86.Hellman, L. M. et al. Differential scanning fluorimetry based assessments of the thermal and kinetic stability of peptide-MHC complexes. J Autism Dev Disord 432, 95–101 (2016). 87.Sartim, M. A., Pinheiro, M. P., dePádua, R. A. P., Sampaio, S.V. &Nonato, M. C. Structural and binding studies of a C-type galactose-binding lectin from Bothrops jararacussu snake venom. Toxicon 126, 59–69 (2017). 88.Rustiguel, J. K. et al. Full-length model of the human galectin-4 and insights into dynamics of inter-domain communication. Sci. Rep. 6, 1–13 (2016). 89.Cao, Y. et al. Expression of CD175 (Tn), CD175s (sialosyl-Tn) and CD176 (Thomsen-Friedenreich antigen) on malignant human hematopoietic cells. Int. J. Cancer 123, 89–99 (2008). 90.Hanisch, F. G. The Thomsen-Friedenreich (TF) antigen: A critical review on the structural, biosynthetic and histochemical aspects of a pancarcinoma-associated antigen. Histol. Histopathol. 12, 263–281 (1997). 91.Pihíková, D., Kasák, P. &Tkac, J. Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors. Open Chem. 13, (2015). 92.deMattos, L. C. Structural diversity and biological importance of ABO, H, Lewis and secretor histo-blood group carbohydrates. Rev. Bras. Hematol. Hemoter. 38, 331–340 (2016). 93.Yamamoto, F. Review: ABO blood group system - ABH oligosaccharide antigens, anti-A and anti-B, A and B glycosyltransferases, and ABO genes. Immunohematology 20, 3–22 (2004). 94.Ju, T., Otto, V. I. &Cummings, R. D. The Tn antigena-structural simplicity and biological complexity. Angew. Chemie - Int. Ed. 50, 1770–1791 (2011). 95.Wang, L. et al. Cross-platform comparison of glycan microarray formats. Glycobiology 24, 507–517 (2014). 96.Jing, P., Kaneta, T. &Imasaka, T. Determination of dye/protein ratios in a labeling reaction between a cyanine dye and bovine serum albumin by micellar electrokinetic chromatography using a diode laser-induced fluorescence detection. Electrophoresis 23, 2465–2470 (2002). 97.Yu, Y. et al. Facile preparation of non-self-quenching fluorescent DNA strands with the degree of labeling up to the theoretic limit. Chem. Commun. 48, 6360–6362 (2012). 98.Batchelor, R. H., Sarkez, A., Cox, W. G. &Johnson, I. Fluorometric assay for quantitation of biotin covalently attached to proteins and nucleic acids. Biotechniques 43, 503–507 (2007). 99.Ruan, Q., Zhao, C., Ramsay, C. S. &Tetin, S. Y. Characterization of fluorescently labeled protein with electrospray ionization-MS and fluorescence spectroscopy: how random is random labeling? Anal. Chem. 90, 9695–9699 (2018). 100.Gornik, O. &Lauc, G. Enzyme linked lectin assay (ELLA) for direct analysis of transferrin sialylation in serum samples. Clin. Biochem. 40, 718–723 (2007). 101.Yamashita, K., Koide, N., Endo, T., Iwaki, Y. &Kobata, A. Altered glycosylation of serum transferrin of patients with hepatocellular carcinoma. J. Biol. Chem. 264, 2415–2423 (1989). 102.Grernbak, M., Henriksen, J. H. &Becker, U. Carbohydrate-deficient transferrin-a valid marker of alcoholism in population studies ? results from the copenhagen city heart study. Alcohol. Clin. Exp. Res. 19, 457–461 (1995). 103.Arndt, N. X., Tiralongo, J., Madge, P. D., VonItzstein, M. &Day, C. J. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines. J. Cell. Biochem. 112, 2230–2240 (2011). 104.Tao, S. C. et al. Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18, 761–769 (2008). 105.Michael, B. &Weiner, S. Enhanced binding sheep erythrocytes of neuraminidase-treated to human T lymphocytes. Blood 42, 939–947 (1973). 106.Deman, J. J., Bruyneel, E. A. &Mareel, M. M. A study on the mechanism of intercellular adhesion: effects of neuraminidase, calcium, and trypsin on the aggregation of suspended hela cells. J. Cell Biol. 60, 641–652 (1974). 107.Barretto, N., Hallak, L. K. &Peeples, M. E. Neuraminidase treatment of respiratory syncytial virus-infected cells or virions, but not target cells, enhances cell-cell fusion and infection. Virology 313, 33–43 (2003). 108.Kuo, C. C., Wang, S. P. &Grayston, J. T. Effect of polycations, polyanions, and neuraminidase on the infectivity of trachoma inclusion conjunctivitis and lymphogranuloma venereum organisms in HeLa cells: sialic acid residues as possible receptors for trachoma inclusion conjunctivitis. Infect. Immun. 8, 74–79 (1973). 109.Galanina, O. et al. Fluorescent carbohydrate probes for cell lectins. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 57, 2285–2296 (2001). 110.Batisse, C. et al. Lectin-based three-color flow cytometric approach for studying cell surface glycosylation changes that occur during apoptosis. Cytom. Part A 62, 81–88 (2004). 111.Yu, Y. P., Wu, A. T., Zou, W., Chen, C. S. &Wu, S. H. Recognition between a divalent sialyl molecule and wheat germ agglutinin. Tetrahedron Lett. 50, 6130–6132 (2009). 112.Wright, C. S. Crystal structure of a wheat germ agglutinin/glycophorin-sialoglycopeptide receptor complex. Structural basis for cooperative lectin-cell binding. J. Biol. Chem. 267, 14345–14352 (1992). 113.Lienemann, M. et al. Characterization of the wheat germ agglutinin binding to self-assembled monolayers of neoglycoconjugates by AFM and SPR. Glycobiology 19, 633–643 (2009). 114.Bonissone, S., Gupta, N., Romine, M., Bradshaw, R. A. &Pevzner, P. A. N-terminal protein processing: A comparative proteogenomic analysis. Mol. Cell. Proteomics 12, 14–28 (2012). 115.Flinta, C., Persson, B., Jörnvall, H. &Heijne, G.von. Sequence determinants of cytosolic N‐terminal protein processing. Eur. J. Biochem. 154, 193–196 (1986). 116.Brown, J. L. The N-terminal region of soluble proteins from prokaryotes and eukaryotes. Biochim. Biophys. Acta 221, 480–488 (1970). 117.Frottin, F. et al. The proteomics of N-terminal methionine cleavage. Mol. Cell. Proteomics 5, 2336–2349 (2006). 118.Waller, J. P. The NH 2 -terminal residues of the proteins from cell-free extracts of E. coli. J. Mol. Biol. 7, 483–496 (1963). 119.Thompson, R., Creavin, A., Connell, M. O., Connor, B. O. &Clarke, P. Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis. Anal. Biochem. 413, 114–122 (2011). 120.Reily, C. et al. Cellular Signaling and Production of Galactose-Deficient IgA1 in IgA Nephropathy, an Autoimmune Disease. J. Immunol. Res. 2014, (2014). 121.Lau, K. K. et al. Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr. Nephrol. 22, 2067–2072 (2007). 122.Mahmud, H. M. Fabry’s Disease — A comprehensive review on pathogenesis , diagnosis and treatment. J. pakistan Med. Assoc. 189–194 (2014). 123.Trimarchi, H. The kidney in fabry disease: More than mere sphingolipids overload. J. Inborn Errors Metab. Screen. 4, 1–5 (2016). 124.Yuasa, T. et al. Fabry disease. Journal of Echocardiography 15, (2017). 125.Wang, L. et al. Cross-platform comparison of glycan microarray formats. Glycobiology 24, 507–517 (2014). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72624 | - |
dc.description.abstract | 從貽貝中分離出來的Crenomytilus grayanus 凝集素(CGL)在系統發生樹上具有其獨特性,除了MytiLec家族外,對大多數已鑑定的凝集素沒有保守性。通過結構分析,CGL是由穩定的β鏈結構所組成的二聚體,並且在每個單體上具有三個與糖結合的位點。CGL擁有對半乳(Gal)、N-乙醯半乳糖胺(GalNAc)和球三糖的多價結合,而被歸類為半乳糖結合凝集素家族的成員。此外,許多研究表明細胞表面非還原端半乳糖/N-乙醯半乳糖胺抗原的數量變化與疾病進展、紅血球細胞老化和血小板衰老有關。因此,這些特點激發了我們開發CGL作為探測細胞表面非還原端半乳糖/N-乙醯半乳糖胺抗原變化的探針,以利臨床診斷。
在這份報告中,我們確定了CGL對於酸鹼值和熱的穩定性。CGL在酸鹼值6-9的範圍內有介於60-70℃的熔解溫度並且在過低的酸鹼值下變得不穩定而無法測得熔解溫度。然而在CGL與半乳糖結合後,又能夠在低酸鹼值的環境下測得熔解溫度。在專一性方面,CGL在聚醣陣列上能識別大多數具有非還原端半乳糖和半乳糖第二號碳上帶有修飾的醣類,但不包含Galβ1-3GalNAc抗原(TF抗原)和大部分Lewis聚醣。CGL也未能識別具有末端帶有唾液酸、葡萄糖、N-乙醯葡萄糖胺和甘露糖的聚醣。 我們的目標是通過N-羥基琥珀醯亞胺(NHS)的化學基團,將生物素或螢光標記在CGL上,來製作監測半乳糖的探針。藉由電噴灑游離液相層析串聯二次質譜分析的結果對比CGL的結構, CGL表面上的六個賴氨酸(Lys7, Lys13, Lys29, Lys55, Lys142 和 Lys 144)可能是被標記的位點,其在空間上不干擾CGL與受質的結合。而由於海拉(HeLa)細胞表面醣類結構為已知,我們測試了CGL探針檢測其糖鏈末端唾液酸被去除時所暴露的半乳糖。通過使用流式細胞術和酵素聯凝集素分析法(ELLA)觀察到神經氨酸酶處理後的細胞與CGL的結合訊號增加。這些努力提供了具有良好特性及用於簡單操作的CGL探針和揭示精確的診斷。 | zh_TW |
dc.description.abstract | Crenomytilus grayanus lectin (CGL) was isolated from mussel and was unique on the phylogenic tree with no conservation to most identified lectin except MytiLec family. From structural analysis, CGL formed a stable β strand structure as dimer and had three glycan-binding sites on each monomer. Interestingly, CGL represented substrate multivalency toward galactose (Gal), N-acetyl galactosamine (GalNAc) and globotriose, thereby being regarded as a member of galactose-binding lectin family. In addition, a number of studies demonstrated that the changes of non-reducing end Gal/GalNAc antigens on the cell surface were highly associated with disease progression, blood cell aging, and platelet senescence. Therefore, the feature of CGL inspired us to develop a probe for detecting the dynamics of cell surface Gal/GalNAc that benefit the clinical diagnosis.
In this report, we determined the pH stability and thermo-stability of CGL. The Tm value of CGL was 60 – 70℃ in the pH range of 6 – 9 and CGL became unstable with undetermined Tm at lower pH environment. However, the Tm can be measured in lower pH value while CGL had bound to galactose. On substrate specificity, CGL was found to recognize most glycans with galactose and galactose derivatives with C-2 modification exposed on the non-reducing end by glycan array except Galβ1-3GalNAc antigen (TF antigen) and most of Lewis glycans. CGL also failed to recognize the glycans with terminal sialic acid, glucose, N-acetyl glucosamine and mannose. With respect to the probe, we aimed to monitor the galactose by conjugating biotin or fluorescence on CGL through NHS-based linker. ESI-LC-MS/MS results and CGL structure confirmed that labeling sites were six lysines (Lys7, Lys13, Lys29, Lys55, Lys142 and Lys 144) on the surface of CGL which did not spatially interfere with substrate binding of CGL. Owing to the known structure of HeLa cell surface glycans, we tested the CGL probe to detect galactose that was exposed while the terminal sialic acid was removed. Indeed, we observed that the signal of CGL probe dramatically increased after neuraminidase treatment by using flow cytometry and enzyme-linked lectin assay (ELLA). These efforts provide well-characterized and facile manipulated CGL based probe and shed light on a precise diagnosis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:02:10Z (GMT). No. of bitstreams: 1 ntu-108-R06b46004-1.pdf: 3997172 bytes, checksum: 4ab8c6f1cd4922a78dbf93692d4de611 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | ACKNOWLEDGEMENT I
中文摘要 II ABSTRACT IV CONTENTS I LIST OF FIGURES V LIST OF TABLES VII 1. INTRODUCTION 1 1.1. Crenomytilus grayanus lectin 1 1.2. Crenomytilus grayanus lectin specificity 2 1.3. Galactose binding protein specificity and disease diagnosis 4 1.4. The sialic acid change was associated with human health 6 1.5. The sialic acid was associated with disease 7 2. MATERIAL AND METHOD 8 2.1. Crenomytilus grayanus lectin purification 8 2.2. CGL was labeled by EZ-Link Sulfo-NHS-LC-Biotin 9 2.3. CGL was labeled by Dylight-650 NHS ester 9 2.4. Sample preparation for labeling site detection and labeling efficiency evaluation 10 2.5. Nano-LC-MS/MS 10 2.6. MS data analyzing 11 2.7. Bio-Layer interferometry 12 2.8. Glycan printing 12 2.9. Lectin binding assay 13 2.10. Buffer preparation 13 2.11. ThermoFluor Assay 14 2.12. HeLa cell culture 15 2.13. Neuraminidase treatment 15 2.14. Enzyme-linked Lectin Assay (ELLA) 16 2.15. Dylight 650-CGL staining 17 2.16. Flow cytometry detection and data analysis 18 3. RESULT 19 3.1. The CGL thermo-stability and pH tolerance 19 3.2. CGL specificity 23 3.2.1 CGL specificity to α and β non-reducing end galactose 23 3.2.2 Lower binding affinity of CGL to Galβ1-3GalNAc and most of Lewis glycan 26 3.2.3 CGL specificity to terminal galactose with C-2 substitute 28 3.2.4 CGL specificity to other kinds of terminal glycans 31 3.3. N-hydroxysuccinimide (NHS) ester labeling of CGL 34 3.4 Enzyme-linked lectin assay (ELLA) for cell surface glycan detection 40 3.5 Flow cytometry for HeLa cell surface glycan detection 45 4. DISCUSSIONS 49 5. REFERENCES 56 6. APPENDIX 67 6.1. CGL at each purification steps 67 6.2. NHS-LC-biotin modified peptides 68 6.3 The CGL specificity at lower concentration 72 6.4 Detect limitation of ELLA. 73 6.5 DyLight 650-CGL labeling efficiency 74 6.6 The CGL compete experiment and different concentration of DyLight 650-CGL for HeLa cell galactose expose after neuraminidase treatment. 75 6.7 The labeling CGL affinity to galactose 76 | |
dc.language.iso | zh-TW | |
dc.title | Crenomytilus grayanus貽貝凝集素探針有望用於偵測非還原端半乳糖與N-乙酰半乳糖胺數量在疾病和血球老化的改變 | zh_TW |
dc.title | Crenomytilus grayanus lectin is a promising probe to
detect disease and blood cell aging by quantifying non-reducing end Gal/GalNAc change | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 梁博煌,花國鋒 | |
dc.subject.keyword | 貽貝凝集素探針,多聚醣晶片,非還原端半乳糖/N-乙醯半乳糖胺,細胞表面聚醣,酵素聯凝集素分析法, | zh_TW |
dc.subject.keyword | Crenomytilus grayanus lectin (CGL) probe,glycan array,Non-reducing end Gal/GalNAc,cell surface glycan,Enzyme-linked lectin assay (ELLA), | en |
dc.relation.page | 76 | |
dc.identifier.doi | 10.6342/NTU201901898 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-31 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
Appears in Collections: | 生化科學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 3.9 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.