Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72617Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林宗賢(Tsung-Hsien Lin) | |
| dc.contributor.author | Po-Yu Li | en |
| dc.contributor.author | 李柏郁 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:02:01Z | - |
| dc.date.available | 2019-08-05 | |
| dc.date.copyright | 2019-08-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-31 | |
| dc.identifier.citation | [1] R. Muller et al., 'A Minimally Invasive 64-Channel Wireless μECoG Implant,' IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 344-359, Jan. 2015.
[2] J. Xu et al., 'A Wearable 8-Channel Active-Electrode EEG/ETI Acquisition System for Body Area Networks,' IEEE Journal of Solid-State Circuits, vol. 49, no. 9, pp. 2005-2016, Sep. 2014. [3] B. Razavi, Design of Analog CMOS Integrated Circuits, McHraw Hill, 2001. [4] W. Liu, X. Jin, J. Chen, M. C. Jeng, Z. Liu, Y. Cheng, K. Chen, M. Chan, K. Hui, J. Huang, R. Tu, P.K. Ko, and Chenming Hu, BSIM3v3.2.2 MOSFET Model Users' Manual, Berkeley Technical Reports, 1999. [5] W. Kester, Understand SINAD, ENOB, SNR, THD, THD+N, and SFDR So You Don’t Get Lost in the Noise Floor, Analog Devices, 2009. [6] J. F. Witte, K. A. A. Makinwa, and J. H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers, Springer, 2009. [7] M. A. P. Pertijs and W. J. Kindt, 'A 140 dB-CMRR Current-Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping,' IEEE Journal of Solid-State Circuits, vol.45, no.10, pp. 2044 - 2056, Oct. 2010. [8] Q. Fan, K. A. A. Makinwa, and J. H. Huijsing, Capacitively-Coupled Chopper Amplifiers, Springer, 2017. [9] R. Wu, K. A. A. Makinwa, and J.H. Huijsing, “A Chopper Current-Feedback Instrumentation Amplifier with a 1 MHz 1/f Noise Corner and an AC-Coupled Ripple Reduction Loop,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3232 - 3243, Dec. 2009. [10] Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8µW 1µV-Offset Capacitively-Coupled Chopper Instrumentation Amplifier in 65nm CMOS for Wireless Sensor Nodes,” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1534 - 1543, Jul. 2011. [11] J. Xu, R. F. Yazicioglu, B. Grundlehner, P. Harpe, K. A. A. Makinwa, and C. Van Hoof, “A 160 μW 8-Channel Active Electrode System for EEG Monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, iss. 6, pp. 555–567, Dec. 2011. [12] J. Angevare, K. A. A. Makinwa “A 6800-um2 Resistor-Based Temperature Sensor in 180-nm CMOS”, in 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), Tainan, Taiwan, 2018, pp. 43–46. [13] C. H. Weng, C. K. Wu, and T. H. Lin, “A CMOS Thermistor-Embedded Continuous-Time Delta-Sigma Temperature Sensor with a Resolution FoM of 0.65 pJ°C2,” IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp.2491-2499, Nov. 2015. [14] H. M. Chuang, K. B. Thei, S.F. Tsai, and W.C. Liu, “Temperature-Dependent Characteristics of Polysilicon and Diffused Resistors,” IEEE Transaction on Electron Devices, vol. 50, no. 5, pp.1413-1415, May. 2003. [15] S. Pan, K. A. A. Makinwa, “A 0.25 mm2-Resistor-Based Temperature Sensor with an Inaccuracy of 0.12 °C (3σ) From −55 °C to 125 °C,” IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3347 - 3355, Dec. 2018. [16] S. Pavan, R. Schreier, and G. C. Temes (2017). Understanding Delta-sigma Data Converters. (2nd ed.). New Jersey: Wiley. [17] S. Pavan, “Systematic Design Centering of Continuous Time Oversampling Converters,” IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 57, no. 3, pp.158-162, Mar. 2010. [18] S. Pavan, “Continuous-Time Delta-Sigma Modulator Design Using the Method of Moments,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 61, no. 6, pp.1629-1637, Jun. 2014. [19] S. Billa, A. Sukumaran, and S. Pavan, “Analysis and Design of Continuous-Time Delta–Sigma Converters Incorporating Chopping,” IEEE Journal of Solid-State Circuits, vol. 52, no. 9, pp.2350-2361, Sep. 2017. [20] T. Nandi, K. Boominathan, and S. Pavan, “Continuous-Time ΔƩ Modulators with Improved linearity and Reduced Clock Jitter Sensitivity Using the Switched-Capacitor return-to-Zero DAC,” IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp.1795-1805, Aug. 2013. [21] H. Jiang, C. Ligouras, S. Nihtianov, and K. A. A. Makinwa, “A 4.5 nV/√Hz Capacitively Coupled Continuous-Time Sigma-Delta Modulator with an Energy-Efficient Chopping Scheme,” IEEE Solid-State Circuits Letters, vol. 1, no. 1, pp.18-21, Jan. 2018. [22] Y. Zhang, C. H. Chen, T. He, and G. C. Temes, “A Continuous-Time Delta-Sigma Modulator for Biomedical Ultrasound Beamformer Using Digital ELD Compensation and FIR Feedback,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 62, no. 7, pp.1689-1698, Jul. 2015. [23] I. J. O’Connell, and C. Lyden, “A Novel Noise Efficient Feedback DAC Within a Switched Capacitor ƩΔ ADC,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 52, no. 1, pp.71-78, Jan. 2005. [24] S. Pan, Y. Luo, S. H. Shalmany, and K. A. A. Makinwa “A Resistor-Based Temperature Sensor with a 0.13pJ·K2 Resolution FOM,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 158-159. [25] U. Sönmez, F. Sebastiano, and K. A. A. Makinwa, “A 1650-μm2 0.9-1.2V Thermal Diffusivity Temperature Sensor in 40nm CMOS,” in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 206-207. [26] M. H. Roshan et al., “A MEMS-Assisted Temperature Sensor With 20-μK Resolution, Conversion Rate of 200 S/s, and FOM of 0.04 pJK2,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.185-197, Jan. 2017. [27] K. Yang, Q. Dong, W. Jung, Y. Zhang, M. Choi, D. Blaauw, and D. Sylvester, “A 0.6nJ -0.22/+0.19°C Inaccuracy Temperature Sensor Using Exponential Subthreshold Oscillation Dependence,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp.160–161. [28] B. Yousefzadeh, and K. A. A. Makinwa, “A BJT-Based Temperature Sensor with a Packaging Robust Inaccuracy of ±0.3°C (3σ) from -55°C to +125°C After Heater-Assisted Voltage Calibration,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp.162–163. [29] A. Mordakhay, and J. Shor, “Miniaturized, 0.01 mm2, Resistor-Based Thermal Sensor With an Energy Consumption of 0.9 nJ and a Conversion Time of 80 μs for Processor Applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 10, pp.3356-3367, Oct. 2018. [30] W. Choi, Y. Lee, S. Kim, S. Lee, J. Jang, J. Chun, K. A. A. Makinwa, and Y. Chae, “A Compact Resistor-Based CMOS Temperature Sensor with an Inaccuracy of 0.12 ◦C (3σ) and a Resolution FoM of 0.43 pJ· K2 in 65-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp.3356-3367, Dec. 2018. [31] S. Pan, Ç. Gürleyük, M. F. Pimenta, and K. A. A. Makinwa, “A 0.12 mm2 Wien-Bridge Temperature Sensor with 0.1°C (3σ) Inaccuracy from -40°C to 180°C,” in 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2019, pp. 184–185. [32] S. Pan, and K. A. A. Makinwa, “A Wheatstone Bridge Temperature Sensor with a Resolution FoM of 20fJ·K2,” in 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2019, pp. 186–187. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72617 | - |
| dc.description.abstract | 本論文提出並實作了一個包含了溫度感測器與低雜訊的類比數位轉換器。此電路實作於台積電180奈米製程,為了減少電路的面積,將一個溫度感測電路與二階連續時間的三角積分類比數位轉換器(2nd-order Continuous-Time Delta-Sigma ADC)整合,省去了傳統系統中的儀表放大器,並達到重複利用電路的功效。為了達成低雜訊,使用了一個電阻式數位類比轉換器(R-DAC)來減少訊號輸入端的閃爍雜訊。為了達成低雜訊,截波器(Chopper)來消除第一級運算放大器雙端輸入之間的不匹配和閃爍雜訊。而加入截波器會對輸入回授產生一個低頻的雜訊,為了去除這種雜訊,電阻式數位類比轉換器中加入了有限脈衝響應濾波器(Finite Impulse Response Filter, FIR Filter)。
提出的晶片核心面積僅0.59平方毫米,支援的量測範圍為 -40°C到100°C,轉換時間為333 微秒。在功耗為183.6 微瓦下,溫度解析度高達0.00371°C。經過批量校正後不準確度為' ±1.8 °C' ,相對應的Resolution FoM = 0.84 pJ°C2 。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:02:01Z (GMT). No. of bitstreams: 1 ntu-108-R05943168-1.pdf: 5290701 bytes, checksum: 30eedd0de5e66282e2bb60923ab27318 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文審定書 i
英文審定書 iii 摘要 vii Abstract ix List of Figures xiii List of Tables xix Chapter 1 Introduction 1 1.1 Background 1 1.2 Dissertation Overview 1 Chapter 2 Fundamental of Sensor Circuits and Low Noise Technique 3 2.1 Basic Sensor Read-Out Systems 3 2.2 Non-Idealities in Sensor Read-Out Systems 4 2.2.1 Offset Voltage 5 2.2.2 Noise Response 6 2.3 Low Noise Technique 10 2.3.1 Auto-zeroing 10 2.3.2 Chopping 12 2.3.3 Digitally-assisted Offset Trimming 14 2.4 Introduction to Sensors for Temperature Sensing Systems 15 2.4.1 BJT-based Temperature Sensors 15 2.4.2 Temperature-to-Phase Sensors 17 2.4.3 Wheatstone Bridge Sensor 18 2.5 Variation of Wheatstone Bridge Sensor 20 2.5.1 Process Corner 20 2.5.2 Variation in Intrinsic Resistance 22 2.5.3 Variation in Temperature Coefficient 23 Chapter 3 Review of Delta-Sigma Modulators 27 3.1 Introduction 27 3.2 DT Loop Filter 27 3.2.1 A N-Bit Quantizer 28 3.2.2 Order of Loop Filter 30 3.2.3 Over-Sampling in ADC 33 3.2.4 Brief Summary 34 3.3 Introduction of CTDSM 34 3.3.1 Difference Between DT/CTDSM 35 3.3.2 Anti-Aliasing Behavior 36 3.3.3 Excess Loop Delay 39 3.3.4 Topology of common CTDSM 41 3.4 Design from DTDSM to CTDSM 42 3.4.1 Design Flow 43 3.4.2 Simulation Results 43 Chapter 4 Design of a Temperature Sensor Embedded Second-Order 1-Bit Continuous-Time Delta-Sigma ADC 51 4.1 Introduction 51 4.2 Analysis of RC-Based Integrator CTDSM Incorporating Chopper 53 4.2.1 System Architecture 53 4.2.2 Noise Analysis 54 4.2.3 Chopper Induced Noise Issue 59 4.2.4 Proposed FIR Filter 62 4.3 Proposed Sensor Embedded CTDSM ADC 64 4.3.1 Detailed System Architecture 64 4.3.2 Operational Amplifier 66 4.3.3 1-Bit Quantizer 71 4.4 Circuit Implementation and Simulation Result 72 4.4.1 Wheatstone Bridge Sensor 72 4.4.2 Read-out circuit 74 Chapter 5 Measurement Results of Proposed Temperature Sensor 81 5.1 Review of Temperature Sensor Specification 81 5.2 Measurement Results 82 5.2.1 Die Photo 82 5.2.2 Measurement Environment Setup 82 5.2.3 Measured Results 84 5.3 Discussion and Summary 92 Chapter 6 Conclusions and Future Works 93 6.1 Conclusions 93 6.2 Future Works 93 References 95 | |
| dc.language.iso | en | |
| dc.subject | 低功率 | zh_TW |
| dc.subject | 低雜訊 | zh_TW |
| dc.subject | 感測器 | zh_TW |
| dc.subject | 截波器 | zh_TW |
| dc.subject | 類比數位轉換器 | zh_TW |
| dc.subject | 溫度感測器 | zh_TW |
| dc.subject | 連續時間三角積分調變器 | zh_TW |
| dc.subject | 有限脈衝響應濾波器 | zh_TW |
| dc.subject | 量化器 | zh_TW |
| dc.subject | Finite Impulse Response Filter (FIR Filter) | en |
| dc.subject | Sensor | en |
| dc.subject | Chopper | en |
| dc.subject | Analog to Digital Converter (ADC) | en |
| dc.subject | Temperature Sensor | en |
| dc.subject | Continuous-Time Delta-Sigma Analog to Digital Converters (CT ΔΣADCs) | en |
| dc.subject | Quantizer | en |
| dc.subject | Low-Power | en |
| dc.subject | Low-Noise | en |
| dc.title | 應用於溫度感測器之低雜訊二階 1 位元連續時間三角積分調變器 | zh_TW |
| dc.title | Design of a CMOS Temperature Sensor Based on a Low-Noise Second-Order 1-bit CT Delta-Sigma Modulator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃柏鈞(Po-Chiun Huang),劉深淵(Shen-Iuan Liu),李泰成(Tai-Cheng Lee) | |
| dc.subject.keyword | 低功率,低雜訊,感測器,截波器,類比數位轉換器,溫度感測器,連續時間三角積分調變器,有限脈衝響應濾波器,量化器, | zh_TW |
| dc.subject.keyword | Low-Power,Low-Noise,Sensor,Chopper,Analog to Digital Converter (ADC),Temperature Sensor,Continuous-Time Delta-Sigma Analog to Digital Converters (CT ΔΣADCs),Finite Impulse Response Filter (FIR Filter),Quantizer, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU201901914 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| Appears in Collections: | 電子工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-108-1.pdf Restricted Access | 5.17 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
