請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72605完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永耀(Yung-Yaw Chen) | |
| dc.contributor.author | Shu-Te Su | en |
| dc.contributor.author | 蘇恕德 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:01:46Z | - |
| dc.date.available | 2022-01-01 | |
| dc.date.copyright | 2021-01-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-01-14 | |
| dc.identifier.citation | [1] S. Matl, R. Brosig, M. Baust, N. Navab, and S. Demirci, 'Vascular image registration techniques: A living review,' Medical image analysis, vol. 35, pp. 1-17, 2017. [2] Z. Amini and H. Rabbani, 'Classification of medical image modeling methods: a review,' Current Medical Imaging Reviews, vol. 12, no. 2, pp. 130-148, 2016. [3] F. Alam, S. U. Rahman, A. Khalil, S. Khusro, and M. Sajjad, 'Deformable registration methods for medical images: a review based on performance comparison,' Proceedings of the Pakistan Academy of Sciences. A Physic Comput Sci, vol. 53, pp. 111-30, 2016. [4] F. P. Oliveira and J. M. R. Tavares, 'Medical image registration: a review,' Computer methods in biomechanics and biomedical engineering, vol. 17, no. 2, pp. 73-93, 2014. [5] P. J. Besl and N. D. McKay, 'Method for registration of 3-D shapes,' in Sensor Fusion IV: Control Paradigms and Data Structures, 1992, vol. 1611: International Society for Optics and Photonics, pp. 586-607. [6] D. M. Cash, M. I. Miga, T. K. Sinha, R. L. Galloway, and W. C. Chapman, 'Compensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements,' IEEE Transactions on Medical Imaging, vol. 24, no. 11, pp. 1479-1491, 2005, doi: 10.1109/TMI.2005.855434. [7] S. Schaefer, T. McPhail, and J. Warren, 'Image deformation using moving least squares,' in ACM SIGGRAPH 2006 Papers, 2006, pp. 533-540. [8] R. Castillo et al., 'A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets,' Physics in Medicine and Biology, vol. 54, no. 7, pp. 1849-1870, 2009/03/05 2009, doi: 10.1088/0031-9155/54/7/001. [9] A. Myronenko and X. Song, 'Point set registration: Coherent point drift,' IEEE transactions on pattern analysis and machine intelligence, vol. 32, no. 12, pp. 2262-2275, 2010. [10] S. Suwelack et al., 'Physics-based shape matching for intraoperative image guidance,' Medical Physics, vol. 41, no. 11, pp. 111901-n/a, 2014, Art no. 111901, doi: 10.1118/1.4896021. [11] S. F. Johnsen et al., 'Database-Based Estimation of Liver Deformation under Pneumoperitoneum for Surgical Image-Guidance and Simulation,' Cham, 2015: Springer International Publishing, in Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015, pp. 450-458. [12] M. R. Robu et al., 'Intelligent viewpoint selection for efficient CT to video registration in laparoscopic liver surgery,' International Journal of Computer Assisted Radiology and Surgery, journal article vol. 12, no. 7, pp. 1079-1088, July 01 2017, doi: 10.1007/s11548-017-1584-7. [13] Surgery of the Liver, Biliary Tract, Pancreas, and Spleen [Online] Available: https://basicmedicalkey.com/3-surgery-of-the-liver-biliary-tract-pancreas-and-spleen/ [14] 'SMARTsurg.' http://www.smartsurg-project.eu (accessed. [15] B. Kaur, A. Kaur, and G. Kaur, 'Applications of Image Registration,' 2016. [16] Y. Fu, Y. Lei, T. Wang, W. J. Curran, T. Liu, and X. Yang, 'Deep learning in medical image registration: a review,' Physics in Medicine Biology, 2020. [17] S. Bernhardt, S. A. Nicolau, L. Soler, and C. Doignon, 'The status of augmented reality in laparoscopic surgery as of 2016,' Medical Image Analysis, vol. 37, pp. 66-90, 2017/04/01/ 2017, doi: https://doi.org/10.1016/j.media.2017.01.007. [18] S. Chakraborty, P. K. Patra, P. Maji, A. S. Ashour, and N. Dey, 'Image Registration Techniques and Frameworks: A Review,' in Applied Video Processing in Surveillance and Monitoring Systems: IGI Global, 2017, pp. 102-114. [19] Z. Ronaghi, E. B. Duffy, and D. M. Kwartowitz, 'Toward real-time remote processing of laparoscopic video,' Journal of Medical Imaging, vol. 2, no. 4, pp. 1-5, 5, 2015. [Online]. Available: https://doi.org/10.1117/1.JMI.2.4.045002. [20] L. G. Brown, 'A survey of image registration techniques,' ACM computing surveys (CSUR), vol. 24, no. 4, pp. 325-376, 1992. [21] P. A. Van den Elsen, E.-J. Pol, and M. A. Viergever, 'Medical image matching-a review with classification,' IEEE Engineering in Medicine and Biology Magazine, vol. 12, no. 1, pp. 26-39, 1993. [22] C. R. Maurer and J. M. Fitzpatrick, 'A review of medical image registration,' Interactive image-guided neurosurgery, vol. 17, 1993. [23] T. McInerney and D. Terzopoulos, 'Deformable models in medical image analysis: a survey,' Medical image analysis, vol. 1, no. 2, pp. 91-108, 1996. [24] J. A. Maintz and M. A. Viergever, 'A survey of medical image registration,' Medical image analysis, vol. 2, no. 1, pp. 1-36, 1998. [25] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, and D. L. Hill, 'A comparison of similarity measures for use in 2-D-3-D medical image registration,' IEEE transactions on medical imaging, vol. 17, no. 4, pp. 586-595, 1998. [26] H. Lester and S. R. Arridge, 'A survey of hierarchical non-linear medical image registration,' Pattern recognition, vol. 32, no. 1, pp. 129-149, 1999. [27] L. G. H. Derek, G. B. Philipp, H. Mark, and J. H. David, 'Medical image registration,' Physics in Medicine and Biology, vol. 46, no. 3, p. R1, 2001. [Online]. Available: http://stacks.iop.org/0031-9155/46/i=3/a=201. [28] B. Zitova and J. Flusser, 'Image registration methods: a survey,' Image and vision computing, vol. 21, no. 11, pp. 977-1000, 2003. [29] J. P. Pluim, J. A. Maintz, and M. A. Viergever, 'Mutual-information-based registration of medical images: a survey,' IEEE transactions on medical imaging, vol. 22, no. 8, pp. 986-1004, 2003. [30] J. Modersitzki, Numerical methods for image registration. Oxford University Press on Demand, 2004. [31] U. Meier, O. López, C. Monserrat, M. C. Juan, and M. Alcañiz, 'Real-time deformable models for surgery simulation: a survey,' Computer Methods and Programs in Biomedicine, vol. 77, no. 3, pp. 183-197, 3// 2005, doi: http://dx.doi.org/10.1016/j.cmpb.2004.11.002. [32] A. A. Goshtasby, 2-D and 3-D image registration: for medical, remote sensing, and industrial applications. John Wiley Sons, 2005. [33] J. Salvi, C. Matabosch, D. Fofi, and J. Forest, 'A review of recent range image registration methods with accuracy evaluation,' Image and Vision computing, vol. 25, no. 5, pp. 578-596, 2007. [34] R. Kashani et al., 'Objective assessment of deformable image registration in radiotherapy: A multi-institution study,' Medical physics, vol. 35, no. 12, pp. 5944-5953, 2008. [35] B. Fischer and J. Modersitzki, 'Ill-posed medicine—an introduction to image registration,' Inverse Problems, vol. 24, no. 3, p. 034008, 2008. [36] M. V. Wyawahare, P. M. Patil, and H. K. Abhyankar, 'Image registration techniques: an overview,' International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 2, no. 3, pp. 11-28, 2009. [37] X. Gu et al., 'Implementation and evaluation of various demons deformable image registration algorithms on a GPU,' Physics in medicine and biology, vol. 55, no. 1, p. 207, 2009. [38] P. Slomka and R. Baum, 'Multimodality image registration with software: state-of-the-art,' (in English), Eur J Nucl Med Mol Imaging, vol. 36, no. 1, pp. 44-55, 2009/03/01 2009, doi: 10.1007/s00259-008-0941-8. [39] B. Glocker, A. Sotiras, N. Komodakis, and N. Paragios, 'Deformable medical image registration: Setting the state of the art with discrete methods,' Annual review of biomedical engineering, vol. 13, pp. 219-244, 2011. [40] N. Kadoya et al., 'Evaluation of various deformable image registration algorithms for thoracic images,' Journal of radiation research, p. rrt093, 2013. [41] A. Sotiras, C. Davatzikos, and N. Paragios, 'Deformable medical image registration: A survey,' IEEE transactions on medical imaging, vol. 32, no. 7, pp. 1153-1190, 2013. [42] V. R. S. Mani and D. S. rivazhagan, 'Survey of Medical Image Registration,' Journal of Biomedical Engineering and Technology, vol. 1, no. 2, pp. 8-25, 2013. [Online]. Available: http://pubs.sciepub.com/jbet/1/2/1. [43] S. C. Han et al., 'Evaluation of various deformable image registrations for point and volume variations,' Journal of the Korean Physical Society, vol. 67, no. 1, pp. 218-223, 2015. [44] P. Mountney, J. Fallert, S. Nicolau, L. Soler, and P. W. Mewes, 'An Augmented Reality Framework for Soft Tissue Surgery,' Cham, 2014: Springer International Publishing, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, pp. 423-431. [45] N. Tsutsumi et al., 'Image-guided laparoscopic surgery in an open MRI operating theater,' Surgical Endoscopy, journal article vol. 27, no. 6, pp. 2178-2184, June 01 2013, doi: 10.1007/s00464-012-2737-y. [46] L.-M. Su, B. P. Vagvolgyi, R. Agarwal, C. E. Reiley, R. H. Taylor, and G. D. Hager, 'Augmented Reality During Robot-assisted Laparoscopic Partial Nephrectomy: Toward Real-Time 3D-CT to Stereoscopic Video Registration,' Urology, vol. 73, no. 4, pp. 896-900, 2009/04/01/ 2009, doi: https://doi.org/10.1016/j.urology.2008.11.040. [47] L. Maier-Hein et al., 'Convergent iterative closest-point algorithm to accomodate anisotropic and inhomogenous localization error,' IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 8, pp. 1520-1532, 2011. [48] T. R. dos Santos et al., 'Pose-independent surface matching for intra-operative soft-tissue marker-less registration,' Medical Image Analysis, vol. 18, no. 7, pp. 1101-1114, 2014/10/01/ 2014, doi: https://doi.org/10.1016/j.media.2014.06.002. [49] N. Haouchine, J. Dequidt, I. Peterlik, E. Kerrien, M.-O. Berger, and S. Cotin, 'Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery,' in 2013 IEEE international symposium on mixed and augmented reality (ISMAR), 2013: IEEE, pp. 199-208. [50] T. Lange, S. Eulenstein, M. Hünerbein, and P.-M. Schlag, 'Vessel-Based Non-Rigid Registration of MR/CT and 3D Ultrasound for Navigation in Liver Surgery,' Computer Aided Surgery, vol. 8, no. 5, pp. 228-240, 2003/01/01 2003, doi: 10.3109/10929080309146058. [51] F. L. Bookstein, 'Principal Warps: Thin-Plate Splines and the Decomposition of Deformations,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 6, pp. 567-585, 06/01 1989. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/34.24792. [52] A. Sen et al., 'Accuracy of deformable image registration techniques for alignment of longitudinal cholangiocarcinoma CT Images,' Medical Physics, 2020. [53] N. Haouchine, F. Roy, L. Untereiner, and S. Cotin, 'Using contours as boundary conditions for elastic registration during minimally invasive hepatic surgery,' in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 9-14 Oct. 2016 2016, pp. 495-500, doi: 10.1109/IROS.2016.7759099. [54] T. Sielhorst, M. Feuerstein, J. Traub, O. Kutter, and N. Navab, 'Campar: A software framework guaranteeing quality for medical augmented reality,' International Journal of Computer Assisted Radiology and Surgery, vol. 1, p. 29, 2006. [55] P. Dumpuri, L. W. Clements, B. M. Dawant, and M. I. Miga, 'Model-updated image-guided liver surgery: Preliminary results using surface characterization,' Progress in Biophysics and Molecular Biology, vol. 103, no. 2–3, pp. 197-207, 12// 2010, doi: http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.014. [56] S.-T. Su, M.-C. Ho, J.-Y. Yen, and Y.-Y. Chen, 'Featured Surface Matching Method for Liver Image Registration,' IEEE Access, vol. 8, pp. 59723-59731, 2020, doi: 10.1109/ACCESS.2020.2983325. [57] J. Marescaux et al., 'Transatlantic robot-assisted telesurgery,' Nature, vol. 413, no. 6854, pp. 379-380, 2001/09/01 2001, doi: 10.1038/35096636. [58] P. Pratt et al., 'An effective visualisation and registration system for image-guided robotic partial nephrectomy,' Journal of Robotic Surgery, vol. 6, no. 1, pp. 23-31, 2012. [59] A. B. Benincasa, L. W. Clements, S. D. Herrell, and R. L. Galloway, 'Feasibility study for image‐guided kidney surgery: Assessment of required intraoperative surface for accurate physical to image space registrations,' Medical physics, vol. 35, no. 9, pp. 4251-4261, 2008. [60] W.-J. Hsu, 'Finite Element Model-Based Simulation of Liver Deformation for Vessel Tracking,' Master, Electrical Engineering Department, National Taiwan University, 2015. [61] L. Mettlere and K. K. S. Semm, 'Historical profile of Kurt Karl Stephan Semm, born March 23, 1927 in Munich, Germany, resident of Tucson, Arizona, USA since 1996,' JSLS: Journal of the Society of Laparoendoscopic Surgeons, vol. 7, no. 3, p. 185, 2003. [62] G. H. Ballantyne and F. Moll, 'The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery,' Surgical Clinics, vol. 83, no. 6, pp. 1293-1304, 2003. [63] T. Hu, P. K. Allen, T. Nadkarni, N. J. Hogle, and D. L. Fowler, 'Insertable stereoscopic 3D surgical imaging device with pan and tilt,' in Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS EMBS International Conference on, 2008: IEEE, pp. 311-316. [64] B. S. Terry, A. D. Ruppert, K. R. Steinhaus, J. A. Schoen, and M. E. Rentschler, 'An integrated port camera and display system for laparoscopy,' IEEE Transactions on Biomedical Engineering, vol. 57, no. 5, pp. 1191-1197, 2010. [65] B. Tamadazte, A. Agustinos, P. Cinquin, G. Fiard, and S. Voros, 'Multi-view vision system for laparoscopy surgery,' International journal of computer assisted radiology and surgery, vol. 10, no. 2, pp. 195-203, 2015. [66] 'da Vinci 12mm and 8.5mm endoscope.' https://www.intuitivesurgical.com/company/media/images/davinci_instruments_images.php (accessed. [67] D. L. Pham, C. Xu, and J. L. Prince, 'Current Methods in Medical Image Segmentation,' Annual Review of Biomedical Engineering, vol. 2, no. 1, pp. 315-337, 2000, doi: 10.1146/annurev.bioeng.2.1.315. [68] T. Heimann and H.-P. Meinzer, 'Statistical shape models for 3D medical image segmentation: a review,' Medical image analysis, vol. 13, no. 4, pp. 543-563, 2009. [69] T. Rohlfing, C. R. Maurer, Jr., D. A. Bluemke, and M. A. Jacobs, 'Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint,' Medical Imaging, IEEE Transactions on, vol. 22, no. 6, pp. 730-741, 2003, doi: 10.1109/TMI.2003.814791. [70] V. Caselles, R. Kimmel, and G. Sapiro, 'Geodesic Active Contours,' International Journal of Computer Vision, journal article vol. 22, no. 1, pp. 61-79, 1997, doi: 10.1023/a:1007979827043. [71] N. Suzuki, A. Hattori, and M. Hashizume, 'Benefits of augmented reality function for laparoscopic and endoscopic surgical robot systems,' navigation, vol. 1, p. 6, 2008. [72] C. Conrad, M. Fusaglia, M. Peterhans, H. Lu, S. Weber, and B. Gayet, 'Augmented reality navigation surgery facilitates laparoscopic rescue of failed portal vein embolization,' Journal of the American College of Surgeons, vol. 223, no. 4, pp. e31-e34, 2016. [73] S. Ieiri et al., 'Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device,' Pediatric surgery international, vol. 28, no. 4, pp. 341-346, 2012. [74] G. Megali et al., 'EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery,' The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 4, no. 3, pp. 242-251, 2008. [75] W. E. Lorensen and H. E. Cline, 'Marching cubes: A high resolution 3D surface construction algorithm,' SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 163-169, 1987, doi: 10.1145/37402.37422. [76] D. Cohen et al., 'Augmented Reality Image Guidance in Minimally Invasive Prostatectomy,' Berlin, Heidelberg, 2010: Springer Berlin Heidelberg, in Prostate Cancer Imaging. Computer-Aided Diagnosis, Prognosis, and Intervention, pp. 101-110. [77] A. Amir-Khalili, M. S. Nosrati, J.-M. Peyrat, G. Hamarneh, and R. Abugharbieh, 'Uncertainty-Encoded Augmented Reality for Robot-Assisted Partial Nephrectomy: A Phantom Study,' Berlin, Heidelberg, 2013: Springer Berlin Heidelberg, in Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions, pp. 182-191. [78] T. Collins, D. Pizarro, A. Bartoli, M. Canis, and N. Bourdel, 'Computer-Assisted Laparoscopic myomectomy by augmenting the uterus with pre-operative MRI data,' in 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 10-12 Sept. 2014 2014, pp. 243-248, doi: 10.1109/ISMAR.2014.6948434. [79] R. Plantefève, N. Haouchine, J.-P. Radoux, and S. Cotin, 'Automatic Alignment of Pre and Intraoperative Data Using Anatomical Landmarks for Augmented Laparoscopic Liver Surgery,' Cham, 2014: Springer International Publishing, in Biomedical Simulation, pp. 58-66. [80] A. Segal, D. Haehnel, and S. Thrun, 'Generalized-icp,' in Robotics: science and systems, 2009, vol. 2, no. 4: Seattle, WA, p. 435. [81] L. W. Clements, J. A. Collins, Y. Wu, A. L. Simpson, W. R. Jarnagin, and M. I. Miga, 'Validation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound: preliminary method and results,' 2015, vol. 9415, pp. 94150T-94150T-9. [Online]. Available: http://dx.doi.org/10.1117/12.2082940. [Online]. Available: http://dx.doi.org/10.1117/12.2082940 [82] F. Berendsen, A. N. T. Kotte, M. Viergever, and J. P. Pluim, Registration of organs with sliding interfaces and changing topologies (SPIE Medical Imaging). SPIE, 2014. [83] M. P. Heinrich, M. Jenkinson, M. Brady, and J. A. Schnabel, 'MRF-Based Deformable Registration and Ventilation Estimation of Lung CT,' IEEE Transactions on Medical Imaging, vol. 32, no. 7, pp. 1239-1248, 2013, doi: 10.1109/TMI.2013.2246577. [84] P. J. Besl and N. D. McKay, 'Method for registration of 3-D shapes,' 1992, vol. 1611, pp. 586-606. [Online]. Available: http://dx.doi.org/10.1117/12.57955. [Online]. Available: http://dx.doi.org/10.1117/12.57955 [85] L. W. Clements, W. C. Chapman, B. M. Dawant, R. L. Galloway, and M. I. Miga, 'Robust surface registration using salient anatomical features for image-guided liver surgery: Algorithm and validation,' Medical Physics, vol. 35, no. 6, pp. 2528-2540, 2008, doi: doi:http://dx.doi.org/10.1118/1.2911920. [86] C.-C. Chien, Y.-F. Chang, M.-C. Ho, J.-Y. Yen, and Y.-Y. Chen, 'Computation of liver deformations with finite element model,' in Automatic Control Conference (CACS), 2017 International, 2017: IEEE, pp. 1-6. [87] K. S. Arun, T. S. Huang, and S. D. Blostein, 'Least-Squares Fitting of Two 3-D Point Sets,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-9, no. 5, pp. 698-700, 1987, doi: 10.1109/TPAMI.1987.4767965. [88] O. Van Kaick, H. Zhang, G. Hamarneh, and D. Cohen‐Or, 'A survey on shape correspondence,' in Computer Graphics Forum, 2011, vol. 30, no. 6: Wiley Online Library, pp. 1681-1707. [89] G. K. L. Tam et al., 'Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid,' IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 7, pp. 1199-1217, 2013, doi: 10.1109/TVCG.2012.310. [90] L. Seungyong, G. Wolberg, and S. Sung Yong, 'Scattered data interpolation with multilevel B-splines,' Visualization and Computer Graphics, IEEE Transactions on, vol. 3, no. 3, pp. 228-244, 1997, doi: 10.1109/2945.620490. [91] Z. Xie and G. E. Farin, 'Deformation with hierarchical B-splines,' in Mathematical Methods for Curves and Surfaces, L. Tom and L. S. Larry Eds.: Vanderbilt University, 2001, sec. 570875, pp. 545-554. [92] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes, 'Nonrigid registration using free-form deformations: application to breast MR images,' Medical Imaging, IEEE Transactions on, vol. 18, no. 8, pp. 712-721, 1999, doi: 10.1109/42.796284. [93] F. F. Cheng. 'Lecture Notes of Free-Form Surface Modeling.' http://www.cs.uky.edu/~cheng/cs631/Notes/CS631-Chap3-1.pdf (accessed. [94] T. Rohlfing, C. R. Maurer, W. G. O’Dell, and J. Zhong, 'Modeling liver motion and deformation during the respiratory cycle using intensity-based nonrigid registration of gated MR images,' Medical Physics, vol. 31, no. 3, pp. 427-432, 2004, doi: doi:http://dx.doi.org/10.1118/1.1644513. [95] R. E. Strauss. 'Lecture Notes of Thin-Plate Splines.' http://www.faculty.biol.ttu.edu/strauss/Morphometrics/LectureNotes/14_ThinPlateSplines.pdf (accessed. [96] M. S. Floater. 'Spline Methods.' http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v07/undervisningsmateriale/ (accessed. [97] C.-C. Chien, 'Marker Based 3D Image Finite Element Model Simulation of Liver Deformation and Cutting,' Master, Electrical Engineering Department, National Taiwan University, 2017. [98] S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger, and H. Delingette, 'Multiplicative Jacobian Energy Decomposition Method for Fast Porous Visco-Hyperelastic Soft Tissue Model,' Berlin, Heidelberg, 2010: Springer Berlin Heidelberg, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010, pp. 235-242. [99] H. J. Qi. 'Lecture Notes of Finite Element Analysis.' http://www.colorado.edu/MCEN/MCEN4173/lecture_notes.html (accessed. [100] B. Vagvolgyi, L.-M. Su, R. Taylor, and G. D. Hager, 'Video to CT registration for image overlay on solid organs,' Proc. Augmented Reality in Medical Imaging and Augmented Reality in Computer-Aided Surgery (AMIARCS), pp. 78-86, 2008. [101] E. C. Chen, A. J. McLeod, J. S. Baxter, and T. M. Peters, 'Registration of 3D shapes under anisotropic scaling,' International journal of computer assisted radiology and surgery, vol. 10, no. 6, pp. 867-878, 2015. [102] E. Castillo, R. Castillo, J. Martinez, M. Shenoy, and T. Guerrero, 'Four-dimensional deformable image registration using trajectory modeling,' Physics in Medicine and Biology, vol. 55, no. 1, pp. 305-327, 2009/12/11 2009, doi: 10.1088/0031-9155/55/1/018. [103] R. Castillo et al., 'A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive,' Physics in Medicine and Biology, vol. 58, no. 9, pp. 2861-2877, 2013/04/10 2013, doi: 10.1088/0031-9155/58/9/2861. [104] G. Hattab, C. Riediger, J. Weitz, and S. Speidel, 'A case study: impact of target surface mesh size and mesh quality on volume-to-surface registration performance in hepatic soft tissue navigation,' International Journal of Computer Assisted Radiology and Surgery, vol. 15, no. 8, pp. 1235-1245, 2020/08/01 2020, doi: 10.1007/s11548-020-02123-0. [105] E. L. Brewer et al., The image-to-physical liver registration sparse data challenge (SPIE Medical Imaging). SPIE, 2019. [106] J. West et al., 'Comparison and evaluation of retrospective intermodality brain image registration techniques,' Journal of computer assisted tomography, vol. 21, no. 4, pp. 554-568, 1997. [Online]. Available: http://www.insight-journal.org/rire/. [107] J. Vandemeulebroucke, D. Sarrut, and P. Clarysse, 'The POPI-model, a point-validated pixel-based breathing thorax model,' in XVth international conference on the use of computers in radiation therapy (ICCR), 2007, vol. 2, pp. 195-199. [108] 'DICOM Image Library.' http://www.osirix-viewer.com/datasets/ (accessed. [109] 'InsightSoftwareConsortium/ITK.' https://github.com/InsightSoftwareConsortium/ITK/tree/master/Examples/Data (accessed. [110] '3D-IRCADb.' https://www.ircad.fr/research/3dircadb/ (accessed. [111] K. Murphy et al., 'Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge,' IEEE transactions on medical imaging, vol. 30, no. 11, pp. 1901-1920, 2011. [112] J. M. Fitzpatrick, J. B. West, and C. R. Maurer, Jr., 'Predicting error in rigid-body point-based registration,' Medical Imaging, IEEE Transactions on, vol. 17, no. 5, pp. 694-702, 1998, doi: 10.1109/42.736021. [113] L. Duhgoon, N. Woo Hyun, L. Jae Young, and R. Jong Beom, 'Non-rigid registration between 3D ultrasound and CT images of the liver based on intensity and gradient information,' Physics in Medicine and Biology, vol. 56, no. 1, p. 117, 2011. [Online]. Available: http://stacks.iop.org/0031-9155/56/i=1/a=008. [114] P. Read and M.-P. Meyer, Restoration of motion picture film. Elsevier, 2000. [115] M.-C. Ho, S.-T. Su, W.-J. Hsu, J.-Y. Yen, and Y.-Y. Chen, 'Liver Image Registration by Finite Element Model for Deriving Tumour and Vessel Locations,' International Journal of Electrical Engineering, vol. 26, no. 6, pp. 245-254, 2019, doi: 10.6329/CIEE.201912_26(6).0004. [116] A. C. Telea, Data visualization: principles and practice. CRC Press, 2014. [117] T. Funkhouser. 'Lecture Notes of Advanced Computer Graphics.' (accessed. [118] I. Peterlík, C. Duriez, and S. Cotin, 'Modeling and Real-Time Simulation of a Vascularized Liver Tissue,' in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012: 15th International Conference, Nice, France, October 1-5, 2012, Proceedings, Part I, N. Ayache, H. Delingette, P. Golland, and K. Mori Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 50-57. [119] S. Umale et al., 'Experimental in vitro mechanical characterization of porcine Glisson's capsule and hepatic veins,' Journal of Biomechanics, vol. 44, no. 9, pp. 1678-1683, 6/3/ 2011, doi: http://dx.doi.org/10.1016/j.jbiomech.2011.03.029. [120] H. Yamada and F. G. Evans, 'Strength of biological materials,' 1970. [121] C.-A. Saint-Pierre, J. Boisvert, G. Grimard, and F. Cheriet, 'Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images,' Machine Vision and Applications, vol. 22, no. 1, pp. 171-180, 2011. [122] S.-M. Yang et al., 'Image-guided thoracoscopic surgery with dye localization in a hybrid operating room,' Journal of Thoracic Disease, vol. 8, no. Suppl 9, p. S681, 2016. [123] M. Nakao, J. Tokuno, T. Chen-Yoshikawa, H. Date, and T. Matsuda, 'Surface deformation analysis of collapsed lungs using model-based shape matching,' International journal of computer assisted radiology and surgery, vol. 14, no. 10, pp. 1763-1774, 2019. [124] J. Vandemeulebroucke, S. Rit, J. Kybic, P. Clarysse, and D. Sarrut, 'Spatiotemporal motion estimation for respiratory‐correlated imaging of the lungs,' Medical physics, vol. 38, no. 1, pp. 166-178, 2011. [125] J. Vandemeulebroucke, O. Bernard, S. Rit, J. Kybic, P. Clarysse, and D. Sarrut, 'Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT,' Medical physics, vol. 39, no. 2, pp. 1006-1015, 2012. [126] K. Murphy et al., 'Semi-automatic construction of reference standards for evaluation of image registration,' Medical image analysis, vol. 15, no. 1, pp. 71-84, 2011. [127] J. Yang, H. Li, D. Campbell, and Y. Jia, 'Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 11, pp. 2241-2254, 2016, doi: 10.1109/TPAMI.2015.2513405. [128] H. Mora, J. M. Mora-Pascual, A. García-García, and P. Martínez-González, 'Computational Analysis of Distance Operators for the Iterative Closest Point Algorithm,' PLOS ONE, vol. 11, no. 10, p. e0164694, 2016, doi: 10.1371/journal.pone.0164694. [129] Y. He, B. Liang, J. Yang, S. Li, and J. He, 'An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features,' Sensors, vol. 17, no. 8, p. 1862, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72605 | - |
| dc.description.abstract | 本論文提出特徵表面匹配法,用以匹配兩個無標記器官表面的點對點關係,這個表面點對應關係可以形成表面點位移,來實現可變形的圖像校準。外科醫師通常在手術前利用斷層掃描、核磁共振或超音波來擷取器官影像,從中收集器官的腫瘤、血管位置,進而產生腫瘤切除計畫。在微創手術過程中,外科醫師使用腹腔鏡取得術中器官表面資訊,並根據手術計畫來判斷腫瘤、血管的位置,但是在手術過程中器官可以被抬起、移動、捏擠、翻轉或翻轉,這些手術上的必要操作可能導致器官嚴重的變形,使得手術醫師很難根據器官表面資訊來精準地推測出腫瘤、血管的位置,因此切除腫瘤的困難度會提升,甚至會有切到大血管的風險。本論文提出特徵表面匹配法搭配有限元素分析法來計算腫瘤、血管的位置,進而避免上述問題。此方法構建了生物力學體積模型,並使用一種新穎的表面匹配方法來判斷術前和術中器官表面點對點對應關係,此對應關係可形成表面點位移,再利用有限元素分析法將術前的生物力學體積模型根據表面點位移來進行形變計算,進而得到術中血管、腫瘤的位置。本論文的驗證方法是使用目標校準誤差來評估準確性,離體豬肝的驗證結果顯示,內部標記誤差(代表腫瘤、血管的位置)為4.54±3.55公厘,表面標記的誤差為2.98±1.09公厘。本論文亦利用公開的肺臟數據來驗證,使用DIR-LAB的兩組肺臟數據進行的驗證,初始誤差分別為3.91±2.82公厘和11.77±7.12公厘,經過特徵表面匹配法計算表面點位移與有限元素分析法計算形變,可使目標校準誤差分別降至1.88±1.16公厘和4.77±2.59公厘。本論文也使用POPI的其中一組肺臟數據進行驗證,初始誤差為11.66±6.23公厘,形變計算後目標校準誤差可降至4.12±2.22公厘。與文獻的比較,本論文所提的方法不論初始誤差大或小,目標校準誤差均優於文獻的平均之上,故本論文所提的特徵表面匹配法應用於可形變的影像校準經驗證後,具有可行性以及高度的準確性。 | zh_TW |
| dc.description.abstract | This dissertation devises a featured surface matching method to match the correspondence between two marker-less surface points for deformable image registration. Surgeons usually glean preoperative organ information, such as anatomy and the locations of tumors or large blood vessels, from the preoperative organ images obtained using computed tomography scans, magnetic resonance imaging, or ultrasound. This information forms an intervention plan before the organ resection surgery for removing the tumor. During minimally invasive surgery, the surgeon uses the laparoscope to obtain information about the intraoperative organ surface and identify the locations of tumors and vessels using the preoperative information. However, the organ can be lifted, shifted, flipped, squeezed, or turned over during surgery. These manual operations can lead to severe deformation, so it is challenging to identify intraoperative tumors or vessels’ location. It is also difficult to accurately remove a tumor while avoiding injury to large blood vessels. The removal of the tumors located in the posterior of an organ or close to large blood vessels may run the risk of injuring the tumor or the large blood vessels during resection. This dissertation proposes a featured surface matching method to identify intraoperative vessels or tumors’ locations to avoid the above-mentioned problem. The proposed method constructs the preoperative biomechanical volume model and uses a novel surface matching method to determine the displacement or correspondence between the preoperative and intraoperative surface points. The preoperative volume model is deformed by the finite element model in terms of the displacement so that it aligns with the intraoperative surface model and shows the location of intraoperative vessels and tumors. The experiments use the target registration error to assess the accuracy of the proposed method. The experiment results with an ex vivo porcine liver show that the error in the internal marker (which represents the location of the tumor and the vessel) is 4.54 ± 3.55 mm, and the error in the surface marker is 2.98 ± 1.09 mm. The validation also uses public available lung datasets to access the target registration error. The validation with two DIR-LAB lung datasets show the target registration errors of 1.88 ± 1.16 mm and 4.77 ± 2.59 mm, while initial errors are 3.91 ± 2.82 mm and 11.77 ± 7.12 mm, respectively; and the validation with POPI lung dataset which has the target registration error of 4.12 ± 2.22 mm, while the initial error is 11.66 ± 6.23 mm. The comparison among literature, the proposed method outperforms the accuracy regardless of small or large deformations. The validations demonstrate the feasibility and high degree of accuracy of the proposed method. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:01:46Z (GMT). No. of bitstreams: 1 U0001-1201202100094700.pdf: 5189072 bytes, checksum: 2ac90685a2d125d465077d2727423a2e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 II Acknowledgment III 摘要........... IV Abstract… VI Contents… VIII List of Figures X List of Tables XV 1. Introduction 1 1.1 Motivation 1 1.2 Problem Definition 2 1.3 Previous Approach 4 1.4 Proposed Novel Method 6 1.5 Dissertation Overview 8 2. State of The Art Methods 9 2.1 Image Registration Techniques: An Overview 10 2.2 Current Challenges for Deformable Image Registration 20 2.3 Preoperative and Intraoperative Imaging 22 2.4 Image Modeling 28 2.5 Initial Registration (Pre-registration) 31 2.6 Surface Matching Methods 33 2.7 Geometric Transformation Methods 44 2.8 Near Real-Time Architecture 55 2.9 Performance Evaluation Methods 57 2.10 Summary 63 3. Selected Deformable Image Registration 65 3.1 An Overview of Selected Deformable Image Registration Method 67 3.2 Pre-Registration 70 3.3 Calculating the Organ Image Deformation 72 4. Novel Surface Matching Method 74 4.1 An Overview of Featured Surface Matching Method 74 4.2 Curvature Variation 78 4.3 Leading Point Displacement 83 4.4 Trailing Point Displacement 88 4.5 Morphological Fine-Tuning 89 5. Experiment and Discussions 91 5.1 The Experiment on An Ex Vivo Porcine Liver 91 5.2 The Experiment of Lung Datasets from DIR-LAB 103 5.3 The Experiment of Lung Datasets from POPI 121 5.4 Discussions and Summary 127 6. Conclusions 135 Abbreviation List 138 References 139 | |
| dc.language.iso | en | |
| dc.subject | 外科手術影像導引系統 | zh_TW |
| dc.subject | 器官形變 | zh_TW |
| dc.subject | 表面匹配 | zh_TW |
| dc.subject | 可形變的影像校準 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 微創手術 | zh_TW |
| dc.subject | finite element model | en |
| dc.subject | minimally invasive surgery | en |
| dc.subject | image-guided surgery | en |
| dc.subject | organ deformation | en |
| dc.subject | surface matching | en |
| dc.subject | deformable image registration | en |
| dc.title | 特徵表面匹配法應用於可形變的影像校準 | zh_TW |
| dc.title | Featured Surface Matching Approach in Deformable Image Registration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0001-7843-638X | |
| dc.contributor.advisor-orcid | 陳永耀(0000-0002-7611-4384) | |
| dc.contributor.oralexamcommittee | 顏家鈺(Jia-Yush Yen),何明志(Ming-Chih Ho),陳政維(Cheng-Wei Chen),林峻永(Chun-Yeon Lin) | |
| dc.contributor.oralexamcommittee-orcid | 顏家鈺(0000-0001-8795-9211),何明志(0000-0003-3660-1062),陳政維(0000-0003-4807-3340) | |
| dc.subject.keyword | 表面匹配,可形變的影像校準,器官形變,外科手術影像導引系統,微創手術,有限元素分析, | zh_TW |
| dc.subject.keyword | surface matching,deformable image registration,organ deformation,image-guided surgery,minimally invasive surgery,finite element model, | en |
| dc.relation.page | 149 | |
| dc.identifier.doi | 10.6342/NTU202100046 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-01-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1201202100094700.pdf 未授權公開取用 | 5.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
