請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72602
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛承輝(Chun-Hway Hsueh) | |
dc.contributor.author | Shuang Fang | en |
dc.contributor.author | 方雙 | zh_TW |
dc.date.accessioned | 2021-06-17T07:01:42Z | - |
dc.date.available | 2024-08-05 | |
dc.date.copyright | 2019-08-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-31 | |
dc.identifier.citation | [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
[2] C. Li, J. Li, M. Zhao, Q. Jiang. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, J. Alloys Compd. 475 (2009) 752–757. [3] J. Pan, T. Dai, T. Lu, X. Ni, J. Dai, M. Li. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng., A 738 (2018) 362–366. [4] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563 (2018) 546. [5] D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Mater. 123 (2017) 285–294. [6] H. Cheng, X. Liu, Q. Tang, W. Wang, X. Yan, P. Dai. Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering, J. Alloys Compd. 775 (2019) 742–751. [7] N. Stepanov, D. Shaysultanov, R. Chernichenko, N.Y. Yurchenko, S. Zherebtsov, M. Tikhonovsky, G. Salishchev. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy, J. Alloys Compd. 693 (2017) 394–405. [8] B. Gwalani, A.V. Ayyagari, D. Choudhuri, T. Scharf, S. Mukherjee, M. Gibson, R. Banerjee. Microstructure and wear resistance of an intermetallic-based Al0.25Ti0.75CoCrFeNi high entropy alloy, Mater. Chem. Phys. 210 (2018) 197–206. [9] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59 (2011) 6308–6317. [10] O. Senkov, S. Senkova, D. Dimiduk, C. Woodward, D. Miracle. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy, J. Mater. Sci. 47 (2012) 6522–6534. [11] M.G. Poletti, G. Fiore, F. Gili, D. Mangherini, L. Battezzati. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3+ 5 at.% of C, Mater. Des. 115 (2017) 247–254. [12] B. Cantor, I. Chang, P. Knight, A. Vincent. Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. : A 375 (2004) 213–218. [13] C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang, H.-C. Chen. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett. 61 (2007) 1–5. [14] K. Zhang, Z. Fu, J. Zhang, W. Wang, H. Wang, Y. Wang, Q. Zhang, J. Shi. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Mater. Sci. Eng., A 508 (2009) 214–219. [15] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics 26 (2012) 44–51. [16] J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, Z. Lu. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater. 62 (2014) 105–113. [17] Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, E.J. Lavernia. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7. 5Cu17. 5 high-entropy alloy, Acta Mater. 107 (2016) 59–71. [18] S. Sun, Y. Tian, X. An, H. Lin, J. Wang, Z. Zhang. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure, Mater. Today Nano (2018). [19] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie. A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153–1158. [20] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (2013) 5743–5755. [21] S. Zherebtsov, N. Stepanov, Y. Ivanisenko, D. Shaysultanov, N. Yurchenko, M. Klimova, G. Salishchev. Evolution of microstructure and mechanical properties of a CoCrFeMnNi high-entropy alloy during high-pressure torsion at room and cryogenic temperatures, Metals 8 (2018) 123. [22] G. Salishchev, M. Tikhonovsky, D. Shaysultanov, N. Stepanov, A. Kuznetsov, I. Kolodiy, A. Tortika, O. Senkov. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Compd. 591 (2014) 11–21. [23] A. Gali, E.P. George. Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74–78. [24] N. Stepanov, D. Shaysultanov, G. Salishchev, M. Tikhonovsky, E. Oleynik, A. Tortika, O. Senkov. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloys Compd. 628 (2015) 170–185. [25] Е. Tabachnikova, А. Podolskiy, M. Laktionova, N. Bereznaia, M. Tikhonovsky, A. Tortika. Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2–300 K, J. Alloys Compd. (2017) 501–509. [26] D. Shaysultanov, N. Stepanov, G. Salishchev, M. Tikhonovsky. Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnV x (x= 0.25, 0.5, 0.75, 1), Phys. Met. Metallogr. 118 (2017) 579–590. [27] G. Qin, R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, H. Fu. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition, J. Mater. Sci. Technol. 35 (2019) 578–583. [28] J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, X. Fan. Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy, Mater. Chem. Phys. 210 (2018) 136–145. [29] H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee, M. Andrzejczuk, M. Lewandowska, T.G. Langdon. Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng., A 725 (2018) 196–206. [30] H. Cheng, W. Chen, X. Liu, Q. Tang, Y. Xie, P. Dai. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy, Mater. Sci. Eng. : A 719 (2018) 192–198. [31] Y. Dong, K. Zhou, Y. Lu, X. Gao, T. Wang, T. Li. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des. 57 (2014) 67–72. [32] Е. Tabachnikova, А. Podolskiy, M. Laktionova, N. Bereznaia, M. Tikhonovsky, A. Tortika. Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2–300 K, J. Alloys Compd. 698 (2017) 501–509. [33] W. Li, P. Liu, P.K. Liaw. Microstructures and properties of high-entropy alloy films and coatings: a review, Materials Research Letters 6 (2018) 199–229. [34] L. Liu, J. Zhu, C. Hou, J. Li, Q. Jiang. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering, Mater. Des. 46 (2013) 675–679. [35] W. Huo, X. Liu, S. Tan, F. Fang, Z. Xie, J. Shang, J. Jiang. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films, Appl. Surf. Sci. 439 (2018) 222–225. [36] B. Braeckman, F. Boydens, H. Hidalgo, P. Dutheil, M. Jullien, A.-L. Thomann, D. Depla. High entropy alloy thin films deposited by magnetron sputtering of powder targets, Thin Solid Films 580 (2015) 71–76. [37] T.-K. Chen, M.-S. Wong, T.-T. Shun, J.-W. Yeh. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol. 200 (2005) 1361–1365. [38] W. Liao, S. Lan, L. Gao, H. Zhang, S. Xu, J. Song, X. Wang, Y. Lu. Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering, Thin Solid Films 638 (2017) 383–388. [39] X. Li, Z. Zheng, D. Dou, J. Li. Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering, Mater. Res. 19 (2016) 802–806. [40] Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen, Y. Liu, Y. Ren, N. Li, P.K. Liaw. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition, Mater. Res. Lett. 3 (2015) 203–209. [41] Y. Zou, H. Ma, R. Spolenak. Ultrastrong ductile and stable high-entropy alloys at small scales, Nat. Commun. 6 (2015) 7748. [42] X. Feng, W. Fu, J. Zhang, J. Zhao, J. Li, K. Wu, G. Liu, J. Sun. Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films, Scr. Mater. 139 (2017) 71–76. [43] B. Braeckman, F. Misják, G. Radnóczi, M. Caplovicová, P. Djemia, F. Tétard, L. Belliard, D. Depla. The nanostructure and mechanical properties of nanocomposite Nbx-CoCrCuFeNi thin films, Scr. Mater. 139 (2017) 155–158. [44] B. Braeckman, D. Depla. Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films, J. Alloys Compd. 646 (2015) 810–815. [45] Z. Wu, X. Wang, Q. Cao, G. Zhao, J. Li, D. Zhang, J.-J. Zhu, J. Jiang. Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x= 0 and 2.5) high-entropy alloy films, J. Alloys Compd. 609 (2014) 137–142. [46] H. Zhang, Y. Pan, Y. He, H. Jiao. Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding, Appl. Surf. Sci. 257 (2011) 2259–2263. [47] D.R. Gaskell, D.E. Laughlin. Introduction to the Thermodynamics of Materials, CRC press, 2017. [48] R.A. Swalin, J. Arents. Thermodynamics of solids, Journal of The Electrochemical Society 109 (1962) 308C–308C. [49] J.-W. Yeh. Alloy design strategies and future trends in high-entropy alloys, Jom 65 (2013) 1759–1771. [50] S. Guo, Q. Hu, C. Ng, C. Liu. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics 41 (2013) 96–103. [51] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw. Solid-solution phase formation rules for multi¬¬¬-component alloys, Adv. Eng. Mater. 10 (2008) 534–538. [52] X. Yang, Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233–238. [53] S. Guo, C. Ng, J. Lu, C. Liu. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (2011) 103505. [54] Y. Jien-Wei. Recent progress in high entropy alloys, Ann. Chim. Sci. Mat 31 (2006) 633–648. [55] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang. High-entropy alloys, Cham: Springer International Publishing (2016). [56] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, S.-Y. Chang. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A 36 (2005) 1263–1271. [57] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu. Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93. [58] C.-W. Tsai, M.-H. Tsai, J.-W. Yeh, C.-C. Yang. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, J. Alloys Compd. 490 (2010) 160–165. [59] M. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility, Scr. Mater. 72 (2014) 5–8. [60] T. Sakthivel, K. Laha, M. Nandagopal, K. Chandravathi, P. Parameswaran, S.P. Selvi, M. Mathew, S.K. Mannan. Effect of temperature and strain rate on serrated flow behaviour of Hastelloy X, Mater. Sci. Eng. : A 534 (2012) 580–587. [61] J. Antonaglia, X. Xie, Z. Tang, C.-W. Tsai, J. Qiao, Y. Zhang, M. Laktionova, E. Tabachnikova, J. Yeh, O. Senkov. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs), Jom 66 (2014) 2002–2008. [62] Z. Tang, T. Yuan, C.-W. Tsai, J.-W. Yeh, C.D. Lundin, P.K. Liaw. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy, Acta Mater. 99 (2015) 247–258. [63] Z. Wang, S. Guo, Q. Wang, Z. Liu, J. Wang, Y. Yang, C. Liu. Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi, Intermetallics 53 (2014) 183–186. [64] M. Seifi, D. Li, Z. Yong, P.K. Liaw, J.J. Lewandowski. Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys, Jom 67 (2015) 2288–2295. [65] A.V. Kuznetsov, D.G. Shaysultanov, N. Stepanov, G.A. Salishchev, O.N. Senkov. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng. : A 533 (2012) 107–118. [66] Z. Liu, S. Guo, X. Liu, J. Ye, Y. Yang, X.-L. Wang, L. Yang, K. An, C.T. Liu. Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy, Scr. Mater. 64 (2011) 868–871. [67] M. Laktionova, E. Tabachnikova, Z. Tang, J. Antonaglia, K. Dahmen, P. Liaw. Low temperature mechanical behavior of the Al0.5CoCrCuFeNi high-entropy alloy, Mater. Sci. Technol. (2012). [68] M. Laktionova, E. Tabchnikova, Z. Tang, P. Liaw. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2–300 K, Low Temp. Phys. 39 (2013) 630–632. [69] T. Chen, T. Shun, J. Yeh, M. Wong. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol. 188 (2004) 193–200. [70] R.-S. Yu, C.-J. Huang, R.-H. Huang, C.-H. Sun, F.-S. Shieu. Structure and optoelectronic properties of multi-element oxide thin film, Appl. Surf. Sci. 257 (2011) 6073–6078. [71] W.-J. Shen, M.-H. Tsai, Y.-S. Chang, J.-W. Yeh. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings, Thin Solid Films 520 (2012) 6183–6188. [72] C. Lin, J. Duh, J. Yeh. Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter, Surf. Coat. Technol. 201 (2007) 6304–6308. [73] X. Feng, G. Tang, L. Gu, X. Ma, M. Sun, L. Wang. Preparation and characterization of TaNbTiW multi-element alloy films, Appl. Surf. Sci. 261 (2012) 447–453. [74] X.H. Yan, J.S. Li, W.R. Zhang, Y. Zhang. A brief review of high-entropy films, Mater. Chem. Phys. 210 (2018) 12–19. [75] K.-H. Cheng, C.-H. Weng, C.-H. Lai, S.-J. Lin. Study on adhesion and wear resistance of multi-element (AlCrTaTiZr)N coatings, Thin Solid Films 517 (2009) 4989–4993. [76] P.-K. Huang, J.-W. Yeh. Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV) N coatings, Thin Solid Films 518 (2009) 180–184. [77] V. Braic, A. Vladescu, M. Balaceanu, C. Luculescu, M. Braic. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings, Surf. Coat. Technol. 211 (2012) 117–121. [78] H.-T. Hsueh, W.-J. Shen, M.-H. Tsai, J.-W. Yeh. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx, Surf. Coat. Technol. 206 (2012) 4106–4112. [79] H. Zhang, Y.-Z. He, Y. Pan, S. Guo. Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy, J. Alloys Compd. 600 (2014) 210–214. [80] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131–140. [81] A. Kauffmann, M. Stüber, H. Leiste, S. Ulrich, S. Schlabach, D.V. Szabó, S. Seils, B. Gorr, H. Chen, H.-J. Seifert. Combinatorial exploration of the high entropy alloy system Co-Cr-Fe-Mn-Ni, Surf. Coat. Technol. 325 (2017) 174–180. [82] A. Zaddach, C. Niu, C. Koch, D. Irving. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, Jom 65 (2013) 1780–1789. [83] M.C. Gao, C. Niu, C. Jiang, D.L. Irving. Applications of special quasi-random structures to high-entropy alloys. High-Entropy Alloys. Springer, 2016. pp. 333–368. [84] P. Bhattacharjee, G. Sathiaraj, M. Zaid, J. Gatti, C. Lee, C.-W. Tsai, J.-W. Yeh. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloys Compd. 587 (2014) 544–552. [85] J.A. Thornton, D. Hoffman. Stress-related effects in thin films, Thin Solid Films 171 (1989) 5–31. [86] O. Bouaziz, S. Allain, C. Scott. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scr. Mater. 58 (2008) 484–487. [87] I. Gutierrez-Urrutia, D. Raabe. Grain size effect on strain hardening in twinning-induced plasticity steels, Scr. Mater. 66 (2012) 992–996. [88] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature 534 (2016) 227. [89] S. Sun, Y. Tian, H. Lin, H. Yang, X. Dong, Y. Wang, Z. Zhang. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement, Mater. Sci. Eng., A 712 (2018) 603–607. [90] L. Lu, X. Chen, X. Huang, K. Lu. Revealing the maximum strength in nanotwinned copper, Science 323 (2009) 607–610. [91] D.A. Porter, K.E. Easterling, M. Sherif. Phase Transformations in Metals and Alloys, (Revised Reprint), CRC press, 2009. [92] R. Qu, Z. Liu, G. Wang, Z. Zhang. Progressive shear band propagation in metallic glasses under compression, Acta Mater. 91 (2015) 19–33. [93] A. Greer, Y. Cheng, E. Ma. Shear bands in metallic glasses, Mater. Sci. Eng., R 74 (2013) 71–132. [94] J.-Y. Kim, D. Jang, J.R. Greer. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale, Acta Mater. 58 (2010) 2355–2363. [95] Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe. Design of a twinning-induced plasticity high entropy alloy, Acta Mater. 94 (2015) 124–133. [96] X. Feng, J. Zhang, K. Wu, X. Liang, G. Liu, J. Sun. Ultrastrong Al0.1CoCrFeNi high-entropy alloys at small scales: effects of stacking faults vs. nanotwins, Nanoscale 10 (2018) 13329–13334. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72602 | - |
dc.description.abstract | 本實驗利用磁控濺鍍系統,以單晶矽(100)為基底,控制其他參數不變,通過改變V靶材不同的射頻功率,共鍍製備了CoCrFeMnNiVx (x = 0, 0.07, 0.3, 0.7, 1.1) 高熵合金薄膜,並討論了V的加入對該薄膜成分、結構與機械性質的影響。XRD的結果表明,當x=0, 0.07時,薄膜為單一的fcc結構;x = 0.3, 0.7, 1.1時,X-Ray繞射峰變寬,通過TEM結果得知,這是因為隨著V的含量增加,薄膜的結構趨於非晶態。TEM結果也表明,當x = 0, 0.07時,薄膜中存在大量雙晶,同時APT的結果表明,這兩個參數下的V原子完全嵌入晶格中,沒有產生析出物,這種微結構使得薄膜的機械性質顯著提升。利用奈米壓痕試驗,檢測了薄膜的微硬度和楊氏模數,可發現V的加入可使薄膜的微硬度有所提升,由約6.8 GPa提高至8.7 GPa。在x = 0.07時,楊氏模數達到最大值206.4 GPa,更高含量的V會使楊氏模數下降,這是由於薄膜中非晶相的產生,導致抵抗變形能力的降低,符合TEM的結果。薄膜的屈服強度、極限抗壓強度、壓縮延性及斷裂韌性由In-situ奈米壓痕試驗機經奈米柱壓縮試驗檢測。該壓縮應力-應變曲線表明,當V的含量為x = 0.07時,屈服強度可達為3.8 GPa,極限抗壓強度可達約4.9 GPa,並保持了約13%的壓縮延性。同時,x ≥ 0.3時,在壓縮後的奈米柱上發現剪切帶,且對應的應力-應變曲線呈現鋸齒流變,這些現象均表明非晶態的產生。觀察壓縮後的奈米柱的TEM結果得知,薄膜中產生的奈米雙晶在壓縮過程中有效緩衝了塑性形變,使薄膜的機械性質有大幅提升。 | zh_TW |
dc.description.abstract | In the present work, CoCrFeMnNiVx (x = 0, 0.07, 0.3, 0.7, 1.1) high entropy alloy films were fabricated by magnetron co-sputtering. For low contents of V, typical face-centered cubic (fcc) peaks were identified in X-ray diffraction patterns. With the increasing V content, the diffraction peaks became broadening and the formation of amorphous phase was promoted. TEM observations showed abundant nanotwins in films with low V contents and the transition from fcc to amorphous structure with the increasing V content. The 3D APT reconstruction results revealed no precipitate in the as-deposited films (x = 0, 0.07). Mechanical properties of the films were studied using nanoindentation and micro-pillar compression tests. The films exhibited high hardness ranging from 6.8 to 8.7 GPa. The serrated flow associated with shear banding showed in the stress-strain curves for films with x ≥ 0.3. When x = 0.07, excellent yield strength of ~3.8 GPa and ultimate compressive strength of ~4.9 GPa were achieved with little sacrifice in ductility. The presence of nanotwins contributed to the strain hardening effect. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:01:42Z (GMT). No. of bitstreams: 1 ntu-108-R06527069-1.pdf: 5587842 bytes, checksum: 008105f8047e78d08985df7d4cd26a7e (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
ACKNOWLEDGEMENT i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xii Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2.1 High Entropy Alloys 5 2.1.1 Definitions of HEAs 5 2.1.2 Phase Formation Rules 7 2.1.3 Four Core Effects 8 2.1.4 Mechanical Properties of High-Entropy Alloys 10 2.2 High Entropy Alloy Films 12 2.2.1 Processing of High Entropy Alloy Films 12 2.2.2 Microstructure of High Entropy Alloy Films 13 2.2.3 Mechanical Properties of High Entropy Alloy Films 17 2.3 Introduction of CoCrFeMnNi 19 2.3.1 Microstructure and Mechanical Properties of CoCrFeMnNi 20 2.3.2 Heat Treatment to CoCrFeMnNi HEA 21 2.3.3 Al addition to CoCrFeMnNi HEA 22 2.3.4 Mo addition to CoCrFeMnNi HEA 24 2.3.5 Ti and C addition to CoCrFeMnNi HEA 25 2.3.6 V addition to CoCrFeMnNi HEA 26 2.3.7 CoCrFeMnNi HEAF 28 Chapter 3 Experimental Procedure 30 3.1 Target and Substrate Preparation 30 3.2 Deposition Process 31 3.3 Analysis Equipment 32 3.3.1 X-ray diffraction 32 3.3.2 SEM Observation 32 3.3.3 TEM Observation 33 3.3.4 3D APT reconstruction 33 3.3.5 Nanoindenter 33 3.3.6 Picoindenter 34 Chapter 4 Results and Discussion 36 4.1 Microstructure 36 4.1.1 Chemical Compositions 36 4.1.2 XRD Results 37 4.1.3 TEM Observations 38 4.1.4 3D APT Reconstructions 41 4.1.5 TKD Observations 41 4.2 Mechanical Properties 42 4.2.1 Nanoindentaion 42 4.2.2 Picoindentation 44 Chapter 5 Conclusions 50 References 51 | |
dc.language.iso | zh-TW | |
dc.title | V對於CoCrFeMnNiVx高熵合金薄膜微結構與機械性質之影響 | zh_TW |
dc.title | Microstructures and Mechanical Properties of CoCrFeMnNiVx High Entropy Alloy Films | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊哲人(Jer-Ren Yang),陳士勛(Shih-Hsun Chen) | |
dc.subject.keyword | 高熵合金薄膜,磁控濺鍍,奈米雙晶,機械性質,奈米壓痕試驗, | zh_TW |
dc.subject.keyword | High entropy alloy films,Sputtering,Nanotwins,Mechanical properties,Nanoindentation, | en |
dc.relation.page | 61 | |
dc.identifier.doi | 10.6342/NTU201902182 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。