Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72599
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許輔(Fu Sheu)
dc.contributor.authorChung-Yan Luen
dc.contributor.author呂宗彥zh_TW
dc.date.accessioned2021-06-17T07:01:38Z-
dc.date.available2024-08-15
dc.date.copyright2019-08-15
dc.date.issued2019
dc.date.submitted2019-07-31
dc.identifier.citation1 Baba, R. and K. Kumazawa. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis. 2014. J. Agric. Food Chem. 62:8308-8313.
2 Bohlmann, J., G. Meyer-Gauen, and R. Croteau. Plant terpenoid synthases: Molecular biology and phylogenetic analysis. 1998. Proc. Natl. Acad. Sci. 95:4126-4133
3 Bueno, M., V.C. Resconi, M.M. Campo, V. Ferreira, and A. Escudero. Development of a robust HS-SPME GC-MS method for the analysis of solid food samples. Analysis of volatile compounds in fresh raw beef of differing lipid oxidation degrees. 2019. Food Chem. 281:49-56
4 Choi, J.Y., C.S. Park, D.J. Kim, M.H. Cho, B.K. Jin, J.E. Pie, and W.G. Chung. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. 2002. NeuroToxicol. 23:367-374
5 Choi, Y.T., C.H. Jung, S.R. Lee, J.H. Bae, W.K. Baek, M.H. Suh, J. Park, C.W. Park, and S.I. Suh. The green tea polyphenol (2)-epigallocatechin gallate attenuates β-amyloid-induced neurotoxicity in cultured hippocampal neurons. 2001. Life Sci. 70:603-614.
6 Deepak, M. and S. Barak. 2018. Beverages: processing and technology. Scientific publishers India. Jodhpur, India.
7 Dharmawardhana, D.P., B.E. Ellis, and J.E. Carlson. cDNA cloning and heterologous expression of coniferin β-glucosidase. 1999. Plant Mole. Biol. 40:365-372.
8 Dong, F., Z. Yang, S. Baldermann, Y. Sato, T. Asai, and N. Watanabe. Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. 2011. J. Agric. Food Chem. 59:13131-13135
9 Feng, Z., Y. Li, M. Li, Y. Wang, L. Zhang, X. Wan, and X. Yang. Tea aroma formation from six model manufacturing process. 2019. Food Chem. 285:347-354.
10 di Guana, C., P. Li, P. D. Riggs, and H. Inouye. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. 1988. Gene 67:21-30
11 Gui, J., X. Fu, Y. Zhou, T. Katsuno, X. Mei, R. Deng, X. Xu, L. Zhang, F. Dong, N. Watanabe, and Z. Ying. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing? 2015. J. Agric. Food Chem. 63:6905-6914
12 Guo, W., K. Sakata, N. Watanabe, R. Nakajima, A. Yaji, K. Ina, and S. Luo. Geranyl 6-O-β-D-xylopyranosyl-β-D-glucopyranoside isolated as an aroma precursor from tea leaves for oolong tea. 1993. Phytochem. 33:1373-1375.
13 Guo, W., K. Yamauchi, N. Watanabe, T. Usui, S. Luo, and K. Sakata. A primeverosidase as a main glycosidase concerned with the alcoholic aroma formation in tea leaves. 1995. Biosci. Biotech. Biochem. 59:962-964
14 Guo, W., N. Sasaki, M. Fukuda, A. Yagi, N. Watanabe, and K. Sakata. Isolation of aroma precursors of benzaldehyde from tea leaves (Camellia sinensis var. sinensis cv. Yakibuta) 1998. Biosci. Biotechnol. Biochem. 62:2052-2054
15 Guo, W., R. Hosoi, K. Sakata, N. Watanabe, A. Yagi, K. Ina, and S. Luo. (S)-Linalyl, 2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves. 1994. Biosci. Biotech. Biochem. 58:1532-1534.
16 Haslam E. Thoughts on thearubigins. 2003. Phytochem. 64:61-73.
17 He, Q., Y. Zhang, S. Zhou, S. She, G. Chen, K. Chen, Z. Yan, and D. Guo. Estimating the aroma glycosides in flue-cured tobacco by solid-phase extraction and gas chromatography-mass spectrometry: changes in the bound aroma profile during leaf maturity. 2015. Flavour Fragr. J. 30:230-237
18 Ho C., X. Zheng, and S. Li. Tea Aroma Formation. 2015. Food Sci. Hum. Well. 4:9-27
19 Hoffman, E. and V. Stroobant. 2007. Mass spectrometry: principle and applications. Wiley. NJ, U.S.
20 Higdon, J.V. and B. Frei. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. 2003. Crit. Rev. Food Sci. Nutrit. 43:89-143
21 Hu, C., D. Li, Y. Ma, W. Zhang, X. Zheng, Y. Liang, and J. Lu. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. 2018. Food Chem. 269:202-211
22 Ijima, Y., K. Ogawa, N. Watanabe, T. Usui, M. Ohnish-Kameyama, T. Nagata, and K. Sakata. Characterization of β-primeverosidase, being concerned with alcoholic aroma formation in tea Leaves to be processed into black tea, and preliminary observations on its substrate specificity. 1998. J. Agric. Food Chem. 46:1716-1718.
23 Jiang, H., F. Yu, L. Qin, N. Zhang, Q. Cao, W. Schwab, D. Li, and C. Song. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. 2019. J. Food Compos. Anal. 77:28-38
24 Kataoka, H., H.L. Lord, and J. Pawliszyn. 2000. Applications of solid-phase microextraction in food analysis. J. Chromatogr. A 880:35-62
25 Katsuno, T., H. Kasuga, Y. Kasuno, Y. Yaguchi, M. Tomomura, J. Cui, Z. Yang, S. Baldermann, Y. Nakamura, T. Ohnishi, N. Mase, and N. Watanabe. Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process. 2014. Food Chem. 148:388-395.
26 Kim, Y., K.L. Goodner, J.D. Park, J. Choi, and S.T. Talcott. Changes in antioxidants phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. 2011. Food Chem. 29:1331-1342
27 Kumar, C.S., R. Subramanian, and L.J. Rao. Application of enzymes in the production of RTD black tea beverages: a review. 2013. Crit. Rev. Food Sci. Nutri. 53:180-197
28 Lau, H., S.Q. Liu, Y.Q. Xu, B. Lassabliere, J. Sun, and B. Yu. Characterising volatiles in tea (Camellia sinensis). Part I: Comparison of headspace-solid phase microextraction and solvent assisted flavor evaporation. 2018. Food Sci. Technol. 94:178-189.
29 Li, P., Y. Zhu, M. Lu, C. Yang, D. Xie, J. Tan, Q. Peng, Y. Zhang, D. Ni, W. Dai, and Z. Lin. Variation patterns in the content of glycosides during green tea manufacturing by a modification-specific metabolomics approach: Enzymatic reaction promoting an increase in the glycosidically bound volatiles at the pan firing stage. 2019. Food Chem. 279:80-87.
30 Li, S., C.Y. Lo, M.H. Pan, C.H. Lai, and C.T. Ho. Black tea: chemical analysis and stability. 2013. Food Funct. 4:10-18.
31 Lin, S.Y., Y.L. Chen, C.L. Lee, C.Y. Cheng, S.F. Roan, and I.Z. Chen. Monitoring volatile compound profiles and chemical compositions during the process of manufacturing semi-fermented oolong tea. 2013. J. Hortic. Sci. Biotechnol. 88:159-164
32 Ma, C., Y. Qu, Y. Zhang, B. Qiu, Y. Wang, and X. Chen. Determination of nerolidol in teas using headspace solid phase microextraction–gas chromatography. 2014. Food Chem. 152:285-290
33 Ma, L., Y. Qiao, L. Du, Y. Li, S. Huang, F. Liu, and D. Xiao. Evaluation and optimization of a superior extraction method for the characterization of the volatile profile of black tea by HS-SPME/GC-MS. 2017. Food Anal. Method 10:2481-2489.
34 Ma, S.J., M. Mizutani, J. Hiratake, K. Hayashi, K. Yagi, N. Watanabe, and K. Sakata. Substrate specificity of β-primeverosidase, a key enzyme in aroma formation during oolong tea and black tea manufacturing. 2001. Biosci. Biotechnol. Biochem. 65:2719-2729
35 Maina, C.V., P.D. Riggs, A.G. Grandea III, B.E. Slatko, L.S. Moran, J.A. Tagliamonte, L. A. Mcreymonds and C. di Guan. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. 1988. Gene 74:365-373
36 Matsumura, S., S. Takahashi, M. Nishikitani, K. Kubota, and A. Kobayashi. The role of diglycosides as tea aroma precursors: synthesis of tea diglycosides and specificity of glycosidases in tea leaves. 1997. J. Agric. Food Chem. 45:2674-2678
37 Meegahakumbura, M.K., M.C. Wambulwa, M.M., Li, K.K. Thapa, Y.S. Sun, M. Moller, J.C. Xu, J.B. Yang, J. Liu, B.Y. Liu, D.Z. Li, and L.M. Gao. Domestication origin and breeding history of the tea plant (Camellia sinensis) in China and India based on nuclear microsatellites and cpDNA sequence data. 2018. Front. Plant Sci. 8:2270
38 Mizutani, M, H., Nakanishi, J. Ema, S. Ma, E. Noguchi, M. Inohara-Ochiai, M. Fukuchi-Mizutani, M. Nakao, and K. Sakata. 2002. Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation. 2002. Plant Physiol. 130:2164-2176
39 Moon, J.H., N. Watanabe, Y. Ijima, A. Yaji, and K. Sakata. cis- and trans- Linalool 3,7-oxides and methyl salicylate glycosides and (Z)-3-hexenyl β-D-glucopyranoside as aroma precursors from tea leaves for oolong tea. 1996. Biosci. Biotech. Biochem. 60:1815-1819.
40 Murugesan, G.S., J. Angayarkanni, and K. Swaminathan. Effect of tea fungus enzymes on the quality of black tea. 2002. Food Chem. 79:411-417
41 Naghma, K. and H. Mukhtar. Tea polyphenols for health promotion. 2007. Life Sci. 81:519-533
42 Natarajan, K. Tannase: a tool for instantaneous tea. 2009. Current Biotica. 3:96-103
43 Ngure, F.M., J.K. Wankoyo, S.M. Mahungu, and A.A. Shitandi. Catechins depletion patterns in relation to theaflavins and thearubigins formation. 2009. Food Chem. 115:8-14.
44 Ogawa, K., Y. Ijima, W. Guo, N. Watanabe, T. Usui, S. Dong, Q. Tong, and K. Sakata. Purification of a β-Primeverosidase concerned with the alcoholic aroma formation in tea leaves to be processed to oolong tea. 1997. J. Agric. Food Chem. 45:877-882
45 Ohgami, S., E. Ono, M. Horikawa, J. Murata, K. Totsuka, H. Toyonaga, Y. Ohba, H. Dohra, T. Asai, K. Matsui, M. Mizutani, N. Watanabe, and T. Ohnishi. Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases. 2015. Plant Physiol. 168:464-477
46 Opassiri, R., B. Pomthong, T. Akiyama, M. Nakphaichit, T. Onkoksoong, M.K. Cairns, and J.R.K. Cairns. A stress-induced rice (Oryza sativa L.) β-glucosidase represents a new subfamily of glycosyl hydrolase family 5 containing a fascin-like domain. 2007. Biochem. J. 408:241-249
47 Ory, R.L. and A.J. St.Angelo. 1977. Enzymes in food and beverage processing. America Chemical Society. Washington, D.C., U.S.
48 Pandey, A., S. Negi, and C. Soccol. 2016. Current developments in biotechnology and bioengineering. Elsevier. Amsterdam, Netherland.
49 Pichersky, E., J.P. Noel, and N. Dudareva. Biosynthesis of plant volatiles: nature’s diversity and ingenuity. 2006. Sci. 311:808-811.
50 Pico, Y. 2007. Food toxicants analysis. Elsevier. Amsterdam, Netherland.
51 Plouvier, V. Study and distribution of primeverosidase and gentiobiosidase. 1980. C. R. Ser. D. 2900:1071-1074
52 Poole, C. 2012. Gas Chromatography. Elsevier. Amsterdam, Netherland.
53 Saino, H., T. Shimizu, J. Hiratake, T. Nakatsu, H. Kato, K. Sakata, and M. Mizutani. Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors. 2014. J. Biol. Chem. 289:16826-16834.
54 Sato, Y., J. Han, H. Fuda, and S. Mikami. Enhancing Monoterpene Alcohols in Sweet Potato Shochu Using the diglycoide-specific β-primeverosidase. 2018. J. Biosci. Bioengineer. 125:218-223
55 Saino, H., M. Mizutani, J. Hiratake, and K. Sakata. Expression and biochemical characterization of β-primeverosidase and application of β-primeverosylamidine to affinity purification. 2008. Biosci. Biotechnol. Biochem. 72:376-383
56 Schuh, C. and P. Schieberle. Characterization of the key aroma compounds in the beverage prepared from Darjeeling Black Tea: quantitative differences between tea leaves and infusion. 2006. J. Agric. Food Chem. 54:916-924.
57 Sheibani, E., S.E. Duncan, D.D. Kuhn, A.M. Dietrich, and S.F. O’Keefe. SDE and SPME analysis of flavor compounds in Jin Xuan oolong tea. 2016. J. Food Sci. 81:348-358
58 Singh, B.N., S. Shankar, and R.K. Srivastava. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. 2011. Biochem. Pharmacol. 82:1807-1821.
59 Su, E., T. Xia, L. Gao, Q. Dai, and Z. Zhang. Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. 2010. Food Bioprod. process 88:83-89.
60 Subramaniam, N., P. Venkatesh, S. Ganguli, and V.P. Sinkar. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. 1999. Food Chem. 47:2571-2578.
61 Teranishi, R., E.L. Wick, and I. Hornstein 1999. Flavor chemistry. Springer. MA, U.S.
62 Theis, A.L., A.J. Waldack, S.M. Hansen, and M.A. Jeannot. Headspace solvent microextraction. 2001. Anal. Chem. 73:5651-5654.
63 Verdoucq, L., J. Moriniere, D.R. Bevan, A. Esen, A. Vasella, B. Henrissat, and M. Czjzek. Structural determinants of substrate specificity in family 1 β-Glucosidases. 2004. J. Biologic. Chem. 279:31796-31803.
64 Vogt, T. Phenylpropanoid biosynthesis. 2010. Mol. Plant 3:2-20
65 Wang, D., E. Kurasawa, Y. Yamaguchi, K. Kubota, and A. Kobayashi. Analysis of glycosidically bound aroma precursors in tea leaves. 2. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. 2001a. J. Agric. Food Chem. 49:1900-1903
66 Wang D., K. Ando, K. Morita, K. Kubota, and A. Kobayashi. Optical isomers of linalool and linalool oxides in tea aroma. 1994. Biosci. Biotech. Biochem. 58:2050-2053
67 Wang D., K. Kubota, A. Kobayashi, and I. Juan. Analysis of glycosidically bound aroma precursors in tea leaves. 3. Changes in glycoside contents of tea leaves during the oolong tea manufacturing process. 2001b. J. Agric. Food Chem. 49:5391-5396.
68 Wang, D., T. Yoshimura, K. Kubota, and A. Kobayashi. Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. 2000. J. Agric. Food Chem. 48:5411-5418
69 Williams, P.J., C.R. Strauss, and B. Wilson. Hydroxylated linalool derivatives as precursors of volatile monoterpenes of muscat Grapes. 1980. J. Agric. Food Chem. 28:766-771
70 Wu, Y. J. 2015. Transcpriptome study on Biosynthesis of volatile organic compounds during manufacturing process of semi-fermented tea. 2015. MS thesis
71 Wu, Y.Y., L. Ding, H.L. Xia, and Y.Y. Tu. Analysis of the major chemical compositions in Fuzhuan brick-tea and its effect on activities of pancreatic enzymes in vitro. 2010. Afr. J. Biotechnol. 9:6748-6754.
72 Xu, J.J., L.H. Ye, J. Cao, W. Cao, and Q.Y. Zhang. Ultramicro chitosan-assisted in-syringe dispersive micro-solid-phase extraction for flavanols from health care tea by ultra-high performance liquid chromatography. 2015. J. Chromatogr. A 1409:11-18.
73 Xu, Y.Q., X.Y. Zhong, S.Q. Chen, J.F. Yin. Hydrolysis of green tea residue protein using proteolytic enzyme derived from Aspergillus oryzae. 2013. J. Food Sci. Technol. 50:171-175
74 Xu, Z., L.L. Escamilla-Trevino, L. Zheg, M. Lalgondar, D.R. Bevan, B.S.J. Winkel, A. Mohamed, C.L. Cheng, M.C. Shih, J.E. Poulton, and A. Esen. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. 2004. Plant Mol. Biol. 55:343-367.
75 Yang, Z., E. Kobayashi, T. Katsuno, T. Asanuma, T. Fujimori, T. Ishikawa, M. Tomomura, K. Mochizuki, T. Watase, Y. Nakamura, and N. Watanabe. Characterisation of volatile and non-volatile metabolites in etiolatedleaves of tea (Camellia sinensis) plants in the dark. 2012. Food Chem. 135:2268-2276
76 Yang, Z., S. Baldermann, and N. Watanabe. Recent studies of the volatile compounds in tea. 2013. Food Res. Intern. 53:585-599
77 Zhang, X.B. and X.F. Du. Effects of exogenous enzymatic treatment during processing on the sensory quality of summer Tieguanyin oolong tea from the Chinese Anxi county. 2015. Food Technol. Biotechnol. 53:180-189
78 Zhao, N., J. Guan, J.L. Ferrer, N. Engle, M. Chern, P. Ronald, T.J. Tschaplinski, and F. Chen. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. 2010. Plant Physiol. Biochem. 48:279-287
79 Zhen, Y.S. 2002. Tea: bioactivity and therapeutic potential. CRC Press. FL, U.S.
80 Zheng, X.Q., Q.S. Li, L.P. Xiang, and Y.R. Liang. Recent advances in volatiles of teas. 2016. Molecules 21:338
81 Zhou, Y., L. Zeng, J. Gui, Y. Liao, J. Li, J. Tang, Q. Meng, F. Dong, and Z. Yang. Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis). 2017. Food Res. intern. 96:206-214
82 Zhu, M., E. Li, and H. He. Determination of volatile chemical constitutes in tea by simultaneous distillation extraction, vacuum hydrodistillation and thermal desorption. 2008. Chromatographia 68:603-610
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72599-
dc.description.abstract茶葉香氣是由揮發性有機化合物 (volatile organic compounds, VOCs)組成,而部分VOCs會在茶葉中形成β-櫻草糖苷 (β-primeverosides) 及β-葡萄糖苷 (β-glucosides)的糖苷鍵結揮發物 (glycosidically bound volatiles, GBVs) ,以存在於液胞中。在烏龍茶液的製造階段中,由於殺菁階段會造成內生性酵素失去活性,因此烏龍茶葉中仍有大量的 GBVs未被酵素水解,而外加β-櫻草糖苷酶 (β-primeverosidase)及 β-葡萄糖苷酶 (β-glucosidase) 可能具有增加烏龍茶葉或茶湯香氣的潛力。本實驗選殖並表現出茶葉中的糖苷水解酶─β-櫻草糖苷酶及 C. sinensis glycosyl hydrolase 1 β-glucosidase 1 (簡稱 CsGH1BG1),並將其加入茶湯及茶葉製程的揉捻階段中,以頂空固相微萃取法輔助氣相層析串聯質譜儀 (headspace micro-extraction gas chromatography-mass spectrometry, HS-SPME GC-MS) 測定揮發性化合物含量差異。將β-櫻草糖苷酶及 CsGH1BG1構築至可轉譯出麥芽糖鍵結蛋白的 malE 基因下游的pMAL-c5x 質體,並以大腸桿菌表現系統異體表現會產生出分子量大小分別為 99.9 kDa 及 96.3 kDa 的 MBP-β-櫻草糖苷酶及 MBP-CsGH1BG1,再以澱粉樹酯管柱進行純化。為了證明重組蛋白的酵素活性,以 para-nitrophenol glucopyranosides (pNP-glucoside) 測定重組蛋白活性,結果顯示,MBP-β-櫻草糖苷酶及 MBP-CsGH1BG1 皆與控制組無顯著差異。然而,以茶葉水萃物進行酵素活性分析的結果中,MBP-β-櫻草糖苷酶處理組相較於控制組,在芳樟醇及香葉醇的含量皆有顯著提升,分別增加 78 % 及 88%,此結果證明MBP-β-櫻草糖苷酶的酵素活性。另一方面,為了評估外加糖苷水解酵素在烏龍茶製程中之應用性,將 MBP-β-櫻草醣苷酶及兩種商用酵素,Aromase及 β-葡萄糖苷酶 (com-β-GD) 的酵素液噴灑在揉捻階段的茶葉上進行發酵,結果顯示,重組蛋白 β-櫻草醣苷酶的處理組與控制組相比,揮發性化合物的含量無顯著變化,然而在 10 mg/mL com-β-GD的處理組中,葉醇 ((Z)-3-hexenol) 及苯甲醛 (benzaldehyde) 的含量有顯著提升 (p <0.05),且苯甲醛之相對含量為對照組增加88 %,證明外源糖苷水解酵素應用在部分發酵茶製程具備可行性。本研究異體表現出具有β-櫻草糖苷酶酵素活性的MBP-β-櫻草糖苷酶,並開發出外源糖苷水解酵素應用在部分發酵茶製程的方法。zh_TW
dc.description.abstractTea aroma was comprised of volatile organic compounds (VOCs) which would transform into glycosidically bound volatiles (GBVs), and β-primeverosides and β-glucosides were two major GBVs in tea plants which were stored in the vacuole. Due to the high temperature of rolling stage during oolong tea manufacturing process, the endogenous enzymes were inactivated and resulted in a large amount of non-hydrolyzed GBVs remaining in dried oolong tea leaves. Therefore, exogenous β-primeverosidase and C. sinensis glycosyl hydrolase 1 β-glucosidase 1 (CsGH1BG1) might have the potential to enhance the aroma of oolong tea leaves and their infusion. In this study, β-primeverosidase and CsGH1BG1 (a β-glucosidase in tea plants) were cloned, identified and expressed. The recombinant proteins were applied in the tea extracts and rolled leaves during the production of oolong tea, and the variation of volatile compounds was analyzed by a head space solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME GC-MS). The inserts of β-primeverosidase and CsGH1BG1 were constructed with pMAL-c5x plasmid, which contained malE gene encoding maltose binding protein (MBP), and 99.9 kDa of MBP-β-primeverosidase and 96.3 kDa MBP-CsGH1BG1 was expressed by Escherichia coli expression system, and then purified by amylose resin affinity column. To determine the enzyme activities, MBP-β-primeverosidase and MBP-CsGH1BG1 were treated with para-nitrophenol glucoside and showed no activity. The other enzyme assay by using tea extracts was applied, and MBP-β-primeverosidase was capable of increasing the contents of linalool and geraniol about 78 % and 88%, respectively. These results showed that MBP-CsGH1BG1 barely had enzyme activity of β-glucosidase. Since MBP-β-primeverosidase had the ability to increase the volatile compounds in tea extracts, indicating that MBP-β-primeverosidase might have β-primeverosidase activity. On the other hand, to evaluate the applicability of exogenous enzyme treatments during oolong tea manufacturing process, MBP-β-primeverosidase and two commercial enzymes, Aromase and β-glucosidase from almonds (com-β-GD), were sprayed on the tea leaves in the rolling step prior to fermentation. The results showed that the treatment of MBP-β-primeverosidase showed no influence on the volatile compounds in tea leaves. However, the relative content of (Z)-3-hexenol and benzaldehyde increased in the treatment of com-β-GD, and the latter increased about 88%, suggesting that the utilization of exogenous glycoside hydrolase during oolong tea manufacturing process was practicable. In conclusion, the recombinant MBP-β-primeverosidase was expressed and have β-primeverosidase activity. Furthermore, the method of exogenous glycoside hydrolase during oolong tea manufacturing process was established in this study.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:01:38Z (GMT). No. of bitstreams: 1
ntu-108-R06628204-1.pdf: 4207168 bytes, checksum: e9141a484e70bab52b73d12fade7d355 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書………………………………………………….…………………….II
致謝……………………………………………………………………..……………...III
摘要……………………………………………………………………………..……....V
ABSTRACT.……..…………………….……………………………….………….….VI
CONTENT………………….……………………………………………………….VIII
LIST OF TABLES………….…………………..………………………………….….XI
LIST OF FIGURES…….…………………………………………………..………..XII
CHAPTER 1 INTRODUCTION…………….…………………………………..…….1
1.1 Introduction of Camellia sinensis……………………………...………………..1
1.2 The chemical profile and the health benefits of tea…………………..…………2
1.3 Classification and processing of tea…………………………..………...………3
1.4 The volatile organic compounds in C. sinensis……………………….…………5
1.5 Introduction of glycosidically bound volatiles………...…………………..……6
1.6 Introduction of β-glucosidase and β-primeverosidase…………………….……7
1.7 Application of exogenous enzyme in tea processing and product………..…….9
1.8 Head-space solid phase microextraction……………………..………….…….10
1.9 Gas chromatography coupled with mass spectrometry……………….……….11
1.10 The aim of the study………………………………………..…...……………12
CHAPTER 2 MATERIAL AND METHODS……………..……………….………. 14
2.1 Chemicals and reagents…………………………..…..….……………..…..….14
2.2 Cloning of CsGH1BG1 from Chin-shin oolong………………………….……15
2.3 Heterologous expression of recombinant β-primeverosidase and CsGH1BG1……………………………………………………………………......17
2.4 Purification of MBP-β-primeverosidase and MBP-CsGH1BG1……...……….18
2.5 The cleavage of maltose binding protein by factor Xa………………….……..20
2.6 SDS-PAGE and Western blotting analysis…………………………………….20
2.7 Determination of the activity of β-glycosidase by using para-nitrophenol β-D- glucopyranoside……………………………………………….…………………..21
2.8 Tea extraction of glycosidically bound volatiles …………………………..…22
2.9 The application of exogenous enzyme during oolong tea processing……….…22
2.10 Head-space solid phase microextraction for volatiles…………….………….23
2.11 Gas chromatography coupled with mass spectrometry………………………24
CHAPTER 3 RESULTS……………………………...……………………………….25
3.1 Cloning of β-primeverosidase and CsGH1BG1……………………….………25
3.2 Heterologous expression of MBP-CsGH1BG1 and MBP-β- primeverosidase…………………………………………………………...…..…..26
3.3 Purification of MBP-CsGH1BG1 and MBP-β-primeverosidase………….…..27
3.4 Cleavage of MBP fused with recombinant protein by factor Xa……….….…..28
3.5 The β-glycosidase assay with para-nitrophenol β-D-glucopyranoside…….….28
3.6 The application of β-glycosidase to tea extract of TTES No.12 (Jinxuan)…....29
3.7 The application of β-glycosidase to tea extract of TTES No.13 (Cuiyu)……...31
3.8 The application of β-glycosidase during the oolong tea manufacturing process.31
CHAPTER 4 DISCUSSION…………………………………………………………..34
4.1 The expression of β-primeverosidase and its activity…………………………34
4.2 The expression of CsGH1BG1 and its activity………………………………..35
4.3 The enzyme activity of MBP-β-primeverosidase…………………….………..36
4.4 The limit of the determination of the activity of MBP-β-primeverosidase.…...36
4.5 The applicability of β-glycosidases during the tea manufacturing process….…37
4.6 Conclusion……………………………………………………....…………….38
REFERENCES ………………………………………………...……………………...40
TABLE…………………………………………………………….….………………..50
FIGURES …………………………………………………………….………………..51
SUPPLEMENTARY FIGURES…………………………………………….…….….72
dc.language.isoen
dc.subject部分發酵茶zh_TW
dc.subject頂空固相微萃取zh_TW
dc.subjectβ-櫻草糖??zh_TW
dc.subject氣相層析串聯質譜儀zh_TW
dc.subjectβ-葡萄糖??zh_TW
dc.subjectβ-primeverosidaseen
dc.subjectβ-glucosidaseen
dc.subjectgas chromatography-mass spectrometryen
dc.subjecthead space micro-extractionen
dc.subjectoolong teaen
dc.title異體表現β-櫻草糖苷酶與β-葡萄糖苷酶及其增進茶葉香氣之應用zh_TW
dc.titleHeterologous Expression of β-Primeverosidase and β-Glucosidase and the Application in the Enhancement of Tea Aromaen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇南維(Nan-Wei Su),周志輝(Chi-Fai Chau),繆希椿(Shi-Chuen Miaw)
dc.subject.keywordβ-櫻草糖??,β-葡萄糖??,部分發酵茶,頂空固相微萃取,氣相層析串聯質譜儀,zh_TW
dc.subject.keywordβ-primeverosidase,β-glucosidase,oolong tea,head space micro-extraction,gas chromatography-mass spectrometry,en
dc.relation.page75
dc.identifier.doi10.6342/NTU201901519
dc.rights.note有償授權
dc.date.accepted2019-07-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved