請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72592完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林辰栖 | |
| dc.contributor.author | Min-Hua Lai | en |
| dc.contributor.author | 賴敏華 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:01:30Z | - |
| dc.date.available | 2024-08-05 | |
| dc.date.copyright | 2019-08-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-31 | |
| dc.identifier.citation | 1. Stone, T.W. and L.G. Darlington, Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov, 2002. 1(8): p. 609-20.
2. Stone, T.W. and M.N. Perkins, Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol, 1981. 72(4): p. 411-2. 3. Schwarcz, R., W.O. Whetsell, Jr., and R.M. Mangano, Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science, 1983. 219(4582): p. 316-8. 4. Beal, M.F., et al., Chronic quinolinic acid lesions in rats closely resemble Huntington's disease. J Neurosci, 1991. 11(6): p. 1649-59. 5. Braidy, N., et al., Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res, 2009. 16(1): p. 77-86. 6. Guidetti, P., et al., Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis, 2006. 23(1): p. 190-7. 7. Kocki, T., et al., New insight into the antidepressants action: modulation of kynurenine pathway by increasing the kynurenic acid/3-hydroxykynurenine ratio. J Neural Transm (Vienna), 2012. 119(2): p. 235-43. 8. Pearson, S.J. and G.P. Reynolds, Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington's disease. Neurosci Lett, 1992. 144(1-2): p. 199-201. 9. Schwarcz, R., et al., Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci, 2012. 13(7): p. 465-77. 10. Okuda, S., et al., 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem, 1998. 70(1): p. 299-307. 11. Eastman, C.L. and T.R. Guilarte, The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem Res, 1990. 15(11): p. 1101-7. 12. Baran, H., et al., Kynurenic acid influences the respiratory parameters of rat heart mitochondria. Pharmacology, 2001. 62(2): p. 119-23. 13. Bordelon, Y.M., et al., Energetic dysfunction in quinolinic acid-lesioned rat striatum. J Neurochem, 1997. 69(4): p. 1629-39. 14. Santamaria, A., et al., In vivo hydroxyl radical formation after quinolinic acid infusion into rat corpus striatum. Neuroreport, 2001. 12(12): p. 2693-6. 15. Behan, W.M., et al., Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol, 1999. 128(8): p. 1754-60. 16. Thevandavakkam, M.A., et al., Targeting kynurenine 3-monooxygenase (KMO): implications for therapy in Huntington's disease. CNS Neurol Disord Drug Targets, 2010. 9(6): p. 791-800. 17. Terness, P., et al., Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med, 2002. 196(4): p. 447-57. 18. Mandi, Y. and L. Vecsei, The kynurenine system and immunoregulation. J Neural Transm (Vienna), 2012. 119(2): p. 197-209. 19. Kemp, J.A. and R.M. McKernan, NMDA receptor pathways as drug targets. Nat Neurosci, 2002. 5 Suppl: p. 1039-42. 20. Hetman, M. and G. Kharebava, Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem, 2006. 6(8): p. 787-99. 21. North, W.G., et al., Breast cancer expresses functional NMDA receptors. Breast Cancer Res Treat, 2010. 122(2): p. 307-14. 22. Adams, S., et al., The kynurenine pathway in brain tumor pathogenesis. Cancer Res, 2012. 72(22): p. 5649-57. 23. Brandacher, G., et al., Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res, 2006. 12(4): p. 1144-51. 24. Karanikas, V., et al., Indoleamine 2,3-dioxygenase (IDO) expression in lung cancer. Cancer Biol Ther, 2007. 6(8): p. 1258-62. 25. Okamoto, A., et al., Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res, 2005. 11(16): p. 6030-9. 26. Urakawa, H., et al., Prognostic value of indoleamine 2,3-dioxygenase expression in high grade osteosarcoma. Clin Exp Metastasis, 2009. 26(8): p. 1005-12. 27. Heng, B., et al., Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget, 2016. 7(6): p. 6506-20. 28. Guillemin, G.J. and B.J. Brew, Implications of the kynurenine pathway and quinolinic acid in Alzheimer's disease. Redox Rep, 2002. 7(4): p. 199-206. 29. Campbell, B., et al., Kynurenines in CNS disease: regulation by inflammatory cytokines. Frontiers in Neuroscience, 2014. 8(12). 30. Cruz, V. and A. Santamaria, Integrative hypothesis for Huntington's disease: A brief review of experimental evidence. Vol. 56. 2007. 513-26. 31. Jin, H., et al., Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma. Sci Rep, 2015. 5: p. 10466. 32. Miyazaki, T., et al., Indoleamine 2,3-dioxygenase as a new target for malignant glioma therapy. Laboratory investigation. J Neurosurg, 2009. 111(2): p. 230-7. 33. Muller, A.J., L. Mandik-Nayak, and G.C. Prendergast, Beyond immunosuppression: reconsidering indoleamine 2,3-dioxygenase as a pathogenic element of chronic inflammation. Immunotherapy, 2010. 2(3): p. 293-7. 34. Merlo, L.M. and L. Mandik-Nayak, IDO2: A Pathogenic Mediator of Inflammatory Autoimmunity. Clin Med Insights Pathol, 2016. 9(Suppl 1): p. 21-28. 35. Prendergast, G.C., Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene, 2008. 27(28): p. 3889-900. 36. Fleisher, B., C. Clarke, and S. Ait-Oudhia, Current advances in biomarkers for targeted therapy in triple-negative breast cancer. Breast Cancer (Dove Med Press), 2016. 8: p. 183-197. 37. Sood, N. and J.S. Nigam, Correlation of CK5 and EGFR with Clinicopathological Profile of Triple-Negative Breast Cancer. Patholog Res Int, 2014. 2014: p. 141864. 38. Dias, K., et al., Claudin-Low Breast Cancer; Clinical & Pathological Characteristics. PloS one, 2017. 12(1): p. e0168669-e0168669. 39. Jiang, G., et al., Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer. BMC Genomics, 2016. 17 Suppl 7(Suppl 7): p. 525. 40. Wahba, H.A. and H.A. El-Hadaad, Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med, 2015. 12(2): p. 106-16. 41. Liu, J., et al., Subcellular localization of MTA proteins in normal and cancer cells. Cancer Metastasis Rev, 2014. 33(4): p. 843-56. 42. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74. 43. Wang, X. and S. Li, Protein mislocalization: mechanisms, functions and clinical applications in cancer. Biochim Biophys Acta, 2014. 1846(1): p. 13-25. 44. Jiao, W., et al., Aberrant nucleocytoplasmic localization of the retinoblastoma tumor suppressor protein in human cancer correlates with moderate/poor tumor differentiation. Oncogene, 2008. 27(22): p. 3156-64. 45. Hubbard, S.R. and W.T. Miller, Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol, 2007. 19(2): p. 117-23. 46. Regad, T., Targeting RTK Signaling Pathways in Cancer. Cancers (Basel), 2015. 7(3): p. 1758-84. 47. EHJ., D., Integrins: An Overview of Structural and Functional Aspects. . Integrins and development 2006. Georgetown(TX Landes Bioscience 1 - 9). 48. Brakebusch, C. and R. Fassler, The integrin-actin connection, an eternal love affair. Embo j, 2003. 22(10): p. 2324-33. 49. DeMali, K.A. and K. Burridge, Coupling membrane protrusion and cell adhesion. J Cell Sci, 2003. 116(Pt 12): p. 2389-97. 50. Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 673-87. 51. Liang, B. and L.K. Tamm, NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nature Structural &Amp; Molecular Biology, 2016. 23: p. 468. 52. Weber, G.F., M.A. Bjerke, and D.W. DeSimone, Integrins and cadherins join forces to form adhesive networks. Journal of Cell Science, 2011. 124(8): p. 1183-1193. 53. Maître, J.-L. and C.-P. Heisenberg, Three functions of cadherins in cell adhesion. Current biology : CB, 2013. 23(14): p. R626-R633. 54. Yang, J., et al., Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell, 2004. 117(7): p. 927-939. 55. Hamidi, H. and J. Ivaska, Every step of the way: integrins in cancer progression and metastasis. Nature Reviews Cancer, 2018. 18(9): p. 533-548. 56. Pan, B., et al., β1 and β3 integrins in breast, prostate and pancreatic cancer: A novel implication. Oncology letters, 2018. 15(4): p. 5412-5416. 57. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424. 58. Waks, A.G. and E.P. Winer, Breast Cancer Treatment: A ReviewBreast Cancer Treatment in 2019Breast Cancer Treatment in 2019. JAMA, 2019. 321(3): p. 288-300. 59. Padma, V.V., An overview of targeted cancer therapy. Biomedicine (Taipei), 2015. 5(4): p. 19. 60. Anders, C.K., T.M. Zagar, and L.A. Carey, The management of early-stage and metastatic triple-negative breast cancer: a review. Hematol Oncol Clin North Am, 2013. 27(4): p. 737-49, viii. 61. Perou, C.M., Molecular stratification of triple-negative breast cancers. Oncologist, 2010. 15 Suppl 5: p. 39-48. 62. Li, Z., et al., Immunotherapeutic interventions of Triple Negative Breast Cancer. Journal of translational medicine, 2018. 16(1): p. 147-147. 63. Zwilling, D., et al., Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 2011. 145(6): p. 863-74. 64. Chiu, Y.-H., et al., Overexpression of Kynurenine 3-Monooxygenase Correlates with Cancer Malignancy and Predicts Poor Prognosis in Canine Mammary Gland Tumors. Journal of oncology, 2019. 2019: p. 6201764-6201764. 65. Matos, A.J., et al., Prognostic studies of canine and feline mammary tumours: the need for standardized procedures. Vet J, 2012. 193(1): p. 24-31. 66. Chen, Y., et al., Aberrant subcellular localization of BRCA1 in breast cancer. Science, 1995. 270(5237): p. 789-91. 67. Zhang, J. and S.N. Powell, The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res, 2005. 3(10): p. 531-9. 68. Mullan, P.B., J.E. Quinn, and D.P. Harkin, The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene, 2006. 25(43): p. 5854-63. 69. Deng, C.X. and S.G. Brodie, Roles of BRCA1 and its interacting proteins. Bioessays, 2000. 22(8): p. 728-37. 70. Jiang, J., et al., p53-Dependent BRCA1 Nuclear Export Controls Cellular Susceptibility to DNA Damage. Cancer Research, 2011. 71(16): p. 5546-5557. 71. Fabbro, M., et al., BARD1 regulates BRCA1 apoptotic function by a mechanism involving nuclear retention. Exp Cell Res, 2004. 298(2): p. 661-73. 72. Naderi, A., et al., A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene, 2006. 26: p. 1507. 73. Cerami, E., et al., The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discovery, 2012. 2(5): p. 401-404. 74. Gao, J., et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal, 2013. 6(269): p. pl1. 75. Goldman, M., et al., The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioRxiv, 2019: p. 326470. 76. Huang, D.W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2008. 4: p. 44. 77. Koch, A., et al., MEXPRESS update 2019. Nucleic Acids Research, 2019. 78. Dent, R., et al., Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clinical Cancer Research, 2007. 13(15): p. 4429-4434. 79. Kanke, Y., et al., Expression profile of CADM1 and CADM4 in triple negative breast cancer with primary systemic therapy. Oncol Lett, 2019. 17(1): p. 921-926. 80. Liu, C.-Y., et al., 602PKynurenine 3-monooxygenase as a potential biomarker for colorectal cancer. Annals of Oncology, 2018. 29(suppl_8). 81. Lee, C.H., et al., 9PKynurenine-3-monooxygenase (KMO) protein promotes triple negative breast cancer progression. Annals of Oncology, 2017. 28(suppl_5). 82. Kampen, K., Membrane Proteins: The Key Players of a Cancer Cell. Vol. 242. 2011. 69-74. 83. Hung, M.C. and W. Link, Protein localization in disease and therapy. J Cell Sci, 2011. 124(Pt 20): p. 3381-92. 84. Sherlach, K.S. and P.D. Roepe, 'Drug resistance associated membrane proteins'. Front Physiol, 2014. 5: p. 108. 85. Schafer, S.T. and F.H. Gage, Nerve cells from the brain invade prostate tumours. Nature, 2019. 569(7758): p. 637-638. 86. Hung, M.-C. and W. Link, Protein localization in disease and therapy. Journal of Cell Science, 2011. 124(20): p. 3381-3392. 87. Parvathi Ranganathan, X.Y., Caroline Na, Ramasamy Santhanam, Sharon Shacham, Michael Kauffman, Alison Walker, Rebecca Klisovic, William Blum, Michael Caligiuri, Carlo M. Croce, Guido Marcucci, and Ramiro Garzon, Preclinical activity of a novel CRM1 inhibitor in acute myeloid leukemia. Blood, 2012 Aug 30. 120(9): p. 1765–1773. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72592 | - |
| dc.description.abstract | 犬尿氨酸-3-單氧化脢(Kynurenine 3-monooxygenase, KMO)是犬尿氨酸途徑(Kynurenine pathway, KP)中的次要關鍵酶。目前研究已證實KMO的失調會導致神經退行性疾病發生,但是在癌症相關的研究中鮮少提及它。我們先前的研究首次闡述KMO在犬乳腺腫瘤中過度表達並且與患者預後不良有關。此外,正常細胞的KMO表達在細胞質中,我們卻發現KMO異常表達在犬乳腺腫瘤細胞膜上。由於犬乳腺腫瘤與人類乳癌在致癌機制上具有高度相似性,本研究重點在探討人類乳癌細胞是否具有同樣的現象;假設確實如此,將進一步研究膜上KMO在腫瘤進程中扮演的角色,且是否和預後較差的人類三陰性乳癌(Triple-negative breast cancer, TNBC)進程有關,結果顯示KMO表現量與乳癌患者的總體存活率顯著負相關。在人類乳癌組織微陣列中,乳癌組織的KMO總表現量和膜上KMO表現量均顯著高於正常乳腺組織。而利用流式細胞儀分析乳癌細胞株HCC-1954、T47D、MDA-MB-231、MDA-MB-453、MDA-MB-468、Hs578T、HCC-1937和BT549,分別有7~86%不等之細胞表現膜上KMO。透過免疫螢光測定和免疫電子顯微鏡也證實三陰性乳癌細胞株MDA-MB-231表達膜上KMO。接著我們使用多種抗人類KMO抗體和Protter蛋白質結構預測軟體分析膜上KMO的結構,揭示它具有兩個跨膜區且N端與C端朝向細胞外。我們進一步製備特異性針對膜上KMO的多株抗體,將此抗體遏阻MDA-MB-231細胞的膜上KMO後,顯著抑制癌細胞的遷移。綜合上述結果,這項研究首次闡明KMO在乳癌臨床組織和細胞株的異常表達在細胞膜上,而且膜上KMO與癌症惡性程度相關並促進乳癌細胞的遷移能力。未來將進一步研究以剖析膜上KMO的致癌機制並評估其作為癌症治療靶點的可行性。 | zh_TW |
| dc.description.abstract | Kynurenine 3-monooxygenase (KMO) is the secondary enzyme in kynurenine pathway and locates on the mitochondrial outer membrane. The dysregulation of KMO has been proved to lead to various neurodegenerative diseases; however, it is rarely mentioned in cancer progression. Our previous study has firstly shown KMO overexpression in canine mammary gland tumor (cMGT) was associated with the poor prognosis in cMGT patients. Surprisingly, we also identified that KMO can aberrantly locate on the cell membrane of cMGT cells, not just like normal cells with KMO expressing only within cytosol. Based on the similar morphology and pathogenesis between cMGT and human breast cancer, this study intends to focus on investigating if surface KMO can also be detected in human breast cancer, and if it does, what is the role of surface KMO in the tumor development, especially for human triple-negative breast cancer (TNBC). The correlation between KMO expressions and the malignancy or outcome of clinical breast cancer cases was analyzed in TCGA/UCSC databases and tissue microarray. It was revealed that higher KMO expression significantly correlated with the poor overall survival rate in breast cancer patients. Moreover, using human breast cancer tissue microarray, we found both total and surface KMO expressions were significantly elevated in breast cancer tissues comparing to those of normal breast tissues. We further demonstrated that 7 to 86% of KMO could be detected on the cell membrane in breast cancer cell lines HCC-1954, T47D, MDA-MB-231, MDA-MB-453, MDA-MB-468, Hs578T, HCC-1937 and BT549 by flow cytometry. These results of the aberrant surface expression of KMO were also confirmed by immunofluorescence assay (IFA) and immune electron microscopy. The topology of surface KMO was probed by epitope mapping using arrays of anti-human KMO antibodies and amino acid (a.a.) sequences analyzer by Protter algorithm to disclose it was a periplasmic N-termini (Nout orientation) and C-termini (Cout orientation) protein with two membrane-spanning domains. Treating MDA-MB-231 cells with anti-KMO polysera produced specifically against surface KMO was found to significantly inhibit migration of tumor cells. Taken together, this study has shown for the first time KMO aberrantly and highly expressed on the cell membrane of breast cancer tissues and cell lines. Additionally, surface KMO associated with cancer malignancy and played the role in promoting cell migration of breast cancer cells. Further investigations are needed to dissect the tumorigenic mechanisms of surface KMO and evaluate its feasibility as the target of cancer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:01:30Z (GMT). No. of bitstreams: 1 ntu-108-R06629016-1.pdf: 3492282 bytes, checksum: b9992bbcf1054c784b70743f5c2b9ddd (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Contents v Chapter 1. Background and Literature Review 1 1.1 Kynurenine pathway 1 1.2 Kynurenine 3-monooxygenase in nerve system and tumor progression 2 1.3 Kynurenine pathway in cancer 3 1.4 Kynurenine 3-monooxygenase 4 1.5 Kynurenine 3-monooxygenase in triple-negative breast cancer 4 1.6 Triple-negative breast cancer 5 1.7 Protein localization in normal cells and in cancer cells 5 1.8 Membrane protein 6 1.9 Cancer cell migration and metastasis 7 Chapter 2. Introduction 9 Chapter 3. Materials and methods 12 3.1 Cell culture 12 3.2 Antibodies and reagents 12 3.3 Immunofluorescence assay (IFA) 12 3.4 Scratch wound healing assay 13 3.5 Reverse-transcription-quantitative polymerase chain reaction (RT-qPCR) 14 3.6 Cell surface staining for flow cytometry 14 3.7 Immunohistochemistry analysis of human tissue microarray (TMA) 15 3.8 Immunogold-labeling and transmission electron microscope 16 3.9 Generation of pAbs against KMO 17 3.10 Bioinformatics analysis 18 3.11 Statistical Analysis 18 Chapter 4. Result 19 4.1 High genetic alterations of KMO was related to poor overall survival rate in breast cancer patients 19 4.2 KMO were highly expressed on both cytosol and cell membrane in clinical breast cancer tissues 20 4.3 Aberrant surface expression of KMO in triple-negative breast cancer cells 20 4.4 Identifying topology of surface KMO on TNBC cells 22 4.5 Blocking surface KMO by antisera inhibited cell migration in TNBC cells 23 Chapter 5. Discussion 25 Tables 30 Figures 35 Supplementary Tables 49 Supplementary Figures 57 Reference 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 膜上犬尿氨酸-3-單氧化脢 | zh_TW |
| dc.subject | 膜蛋白 | zh_TW |
| dc.subject | 三陰性乳癌 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | breast cancer | en |
| dc.subject | triple-negative breast cancer | en |
| dc.subject | membrane protein | en |
| dc.subject | aberrant protein localization | en |
| dc.subject | surface kynurenine 3-monooxygenase | en |
| dc.title | 犬尿氨酸-3-單氧化脢異常表達在細胞膜上促進三陰性乳癌的細胞遷移 | zh_TW |
| dc.title | Aberrant surface expression of kynurenine 3-monooxygenase promotes migration in triple-negative breast cancers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖光文,廖泰慶,蔡女滿,劉峻宇 | |
| dc.subject.keyword | 乳癌,三陰性乳癌,膜上犬尿氨酸-3-單氧化脢,膜蛋白, | zh_TW |
| dc.subject.keyword | breast cancer,triple-negative breast cancer,surface kynurenine 3-monooxygenase,aberrant protein localization,membrane protein, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU201902201 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-31 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
