請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72584
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許輔 | |
dc.contributor.author | Szu-Ting Li | en |
dc.contributor.author | 李思葶 | zh_TW |
dc.date.accessioned | 2021-06-17T07:01:21Z | - |
dc.date.available | 2024-08-19 | |
dc.date.copyright | 2019-08-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-31 | |
dc.identifier.citation | 王英誌. (2017). 還原劑與界面活性劑與提升米蛋白功能性之應用. 臺灣大學 園藝暨景觀學系學位論文, 1-75.
汪漫, 鐵俠, 徐振寶. (2008). 功能稻米的營養價值及發展前景. 農產食品科技. 第四期. 宋勳 & 劉瑋婷. (1996). 稻米品質的影響因素與分級. 稻作生產改進策略研討會專刊, 133-154. 張庭瑜. (2010). 加工條件對豆漿蛋白質結構與豆腐品質之影響. 陳逸潔. (2011). 由 WTO 規範看台灣米混進口碎米事件. 經濟前瞻(134), 74-78. 國家糧食局人事司. (2010). 糧食行業職業技能培訓課程。糧油保管員 (第二版) 劉思辰. (2016). 不同米種之米蛋白組成及其功能性之研究. 臺灣大學 園藝暨景觀學系學位論文, 1-75. AACC, C. (2000). Approved methods of the American association of cereal chemists. Methods, 54, 21. Achayuthakan, P., Suphantharika, M., & BeMiller, J. N. (2012). Confocal laser scanning microscopy of dextran–rice starch mixtures. Carbohydrate polymers, 87(1), 557-563. Adebiyi, A. P., Adebiyi, A. O., Hasegawa, Y., Ogawa, T., & Muramoto, K. (2009). Isolation and characterization of protein fractions from deoiled rice bran. European Food Research and Technology, 228(3), 391-401. Agboola, S., Ng, D., & Mills, D. (2005). Characterisation and functional properties of Australian rice protein isolates. Journal of Cereal Science, 41(3), 283-290. Al‐Doury, M. K., Hettiarachchy, N. S., & Horax, R. (2018). Rice‐Endosperm and Rice‐Bran Proteins: A Review. Journal of the American Oil Chemists' Society, 95(8), 943-956. Aletor, O., Oshodi, A., & Ipinmoroti, K. (2002). Chemical composition of common leafy vegetables and functional properties of their leaf protein concentrates. Food Chemistry, 78(1), 63-68. Amagliani, L., O'Regan, J., Kelly, A. L., & O'Mahony, J. A. (2017). The composition, extraction, functionality and applications of rice proteins: A review. Trends in food science & technology, 64, 1-12. Barraquio, V., & Van de Voort, F. (1988). Milk and soy proteins: their status in review. Canadian Institute of Food Science and Technology Journal, 21(5), 477-493. Cao, X., Wen, H., Li, C., & Gu, Z. (2009). Differences in functional properties and biochemical characteristics of congenetic rice proteins. Journal of Cereal Science, 50(2), 184-189. Champagne, E., Wood, D. F., Juliano, B. O., & Bechtel, D. B. (2004). The rice grain and its gross composition. Rice chemistry and technology, 3, 77-107. Chandi, G. K., & Sogi, D. (2007). Functional properties of rice bran protein concentrates. Journal of Food Engineering, 79(2), 592-597. Chen, C., Chi, Y.-J., & Xu, W. (2012). Comparisons on the functional properties and antioxidant activity of spray-dried and freeze-dried egg white protein hydrolysate. Food and Bioprocess Technology, 5(6), 2342-2352. Chen, W. P., & Chang, Y. C. (1984). Production of high‐fructose rice syrup and high‐protein rice flour from broken rice. Journal of the Science of Food and Agriculture, 35(10), 1128-1135. Damodaran, S. (2005). Protein stabilization of emulsions and foams. Journal of Food Science, 70(3), R54-R66. De la hera, E., Gomez, M., & Rosell, C. M. (2013). Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. Carbohydrate polymers, 98(1), 421-427. Fazzalari, F. (1978). Compilation of odor and taste threshold values data. ASTM data series (USA). Fiocchi, A., Restani, P., Bernardini, R., Lucarelli, S., Lombardi, G., Magazzu, G., Troncone, R. (2006). A hydrolysed rice‐based formula is tolerated by children with cow's milk allergy: a multi‐centre study. Clinical & Experimental Allergy, 36(3), 311-316. German JB and Phillips L. (1991). Protein interactions in foams, in Protein Functionality in Food Systems, ed. by Hettiarachy NS and Ziegler GR. IFT Basic Symposium Series, Chicago, IL, pp. 181–208 Gob, E., Schmitt, J., Benavente, R. & Alsheimer, M. (2010).Mammalian sperm head formation involves different polarization of two novel LINC complexes. PLoS ONE 5, e12072. Gong, K.-J., Shi, A.-M., Liu, H.-Z., Liu, L., Hu, H., Adhikari, B., & Wang, Q. (2016). Emulsifying properties and structure changes of spray and freeze-dried peanut protein isolate. Journal of Food Engineering, 170, 33-40. Guraya, H. S., & James, C. (2002). Deagglomeration of rice starch‐protein aggregates by high‐pressure homogenization. Starch‐Stärke, 54(3‐4), 108-116. Hamada, J. (1997). Characterization of protein fractions of rice bran to devise effective methods of protein solubilization. Cereal Chemistry, 74(5), 662-668. Han, S.W., Chee, K.M., & Cho, S.J. (2015). Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chemistry, 172, 766-769. Hasjim, J., Li, E., & Dhital, S. (2012). Milling of rice grains: The roles of starch structures in the solubility and swelling properties of rice flour. Starch‐Stärke, 64(8), 631-645. Helm, R., & Burks, A. (1996). Hypoallergenicity of rice protein. Cereal foods world, 41(11), 839-843. Hou, L., Zhu, Y., & Li, Q. (2010). Characterization and preparation of broken rice proteins modified by proteases. Food Technology and Biotechnology, 48(1), 50. Ju, Z., Hettiarachchy, N., & Rath, N. (2001). Extraction, denaturation and hydrophobic properties of rice flour proteins. Journal of Food Science, 66(2), 229-232. Juliano, B. (1985). The rice grain and its gross composition. Rice: Chemistry and Technology. Third Edition, Chapter 4. American Association of Cereal Chemists Press. Minneapolis, MN. p77-107. Juliano, B. O., Bressani, R., & Elias, L. G. (1971). Evaluation of the protein quality and milled rices differing in protein content. Journal of Agricultural and Food Chemistry, 19(5), 1028-1034. Kannan, A., Hettiarachchy, N., Johnson, M. G., & Nannapaneni, R. (2008). Human colon and liver cancer cell proliferation inhibition by peptide hydrolysates derived from heat-stabilized defatted rice bran. Journal of Agricultural and Food Chemistry, 56(24), 11643-11647. Kim, J.-W., Kim, B.-C., Lee, J., Lee, D.-R., Rehman, S., & Yun, S. J. (2013). Protein content and composition of waxy rice grains. Pakistan Journal of Botany, 45(1), 151-156. KN Pearce, JE Kinsella. (1978). Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chem., Vol. 26, No. 3. Kobayashi, A., Matsui, C., Sakurai, T., & Aoki, S. (2019). Defoamer oil compound, production method therefor, and defoamer composition. Google Patents. Kochhar, S. (1996). Oxidative pathways to the formation of off-flavours. In Food Taints and off-flavours (pp. 168-225): Springer. Krijne PAC, Essink GK. 2011. Een inventarisatie van de eiwitkennismarkt. Bilthoven: Bridge 2 Food. No. Bridge2Food Report 2010-15. Krishnan, H. B., White, J. A., & Pueppke, S. G. (1992). Characterization and localization of rice (Oryza sativa L.) seed globulins. Plant Science, 81(1), 1-11. Lamberts, L., De Bie, E., Vandeputte, G. E., Veraverbeke, W. S., Derycke, V., De Man, W., & Delcour, J. A. (2007). Effect of milling on colour and nutritional properties of rice. Food Chemistry, 100(4), 1496-1503. Li, G.-H., Qu, M.-R., Wan, J.-Z., & You, J.-M. (2007). Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pacific Journal of Clinical Nutrition, 16(S1), 275-280. Lloyd, B. J., & Siebenmorgen, T. J. (1999). Environmental conditions causing milled rice kernel breakage in medium-grain varieties. Cereal Chem, 76(3), 426-427. Malekian, F. (2000). Lipase and lipoxygenase activity, functionality, and nutrient losses in rice bran during storage. LSU Agricultural Experiment Station Reports. 293. Monsoor, M., & Proctor, A. (2004). Volatile component analysis of commercially milled head and broken rice. Journal of Food Science, 69(8), C632-C636. Morita, T., & Kiriyama, S. (1993). Mass production method for rice protein isolate and nutritional evaluation. Journal of food science, 58(6), 1393-1396. Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the new york Academy of Sciences, 1324(1), 7-14. Osborne, T. (1924). The vegetable proteins Longmans Green. Journal of the Society of Chemical Industry, 43(17), 413-452. Paraman, I., Hettiarachchy, N., & Schaefer, C. (2008). Preparation of rice endosperm protein isolate by alkali extraction. Cereal Chemistry, 85(1), 76-81. Paraman, I., Hettiarachchy, N., Schaefer, C., & Beck, M. I. (2006). Physicochemical properties of rice endosperm proteins extracted by chemical and enzymatic methods. Cereal Chemistry, 83(6), 663-667. Paranthaman, R., Alagusundaram, K., & Indhumathi, J. (2009). Production of protease from rice mill wastes by Aspergillus niger in solid state fermentation. World Journal of Agricultural Sciences, 5(3), 308-312. Puri, S., Dhillon, B., & Sodhi, N. S. (2014). Effect of degree of milling (Dom) on overall quality of rice—A review. Int. J. Adv. Biotechnol. Res, 5, 474-489. Profetas. 2008. Background; social transitions; results. Available from: www.profetas.nl. Accessed 2012 April 4. Qi, X., & Tester, R. F. (2016). Effect of native starch granule size on susceptibility to amylase hydrolysis. Starch‐Stärke, 68(9-10), 807-810. Sawai, H., & Morita, Y. (1968). Studies on rice glutelin. Agricultural and Biological Chemistry, 32(1), 76-80. Shewry, P. R. (2007). Improving the protein content and composition of cereal grain. Journal of Cereal Science, 46(3), 239-250. S Hayakawa, H Suzuki, T Suzuki. (1987). Radial Distribution of Amino Acids in the Milled Rice Kernel. Journal of agricultural and food Chem. 1987, 35, 607-610. Shih, F. F. (2003). An update on the processing of high‐protein rice products. Food/Nahrung, 47(6), 420-424. Shih, F. F., & Daigle, K. W. (2000). Preparation and characterization of rice protein isolates. Journal of the American Oil Chemists' Society, 77(8), 885-889. Suzuki, Y., Ise, K., Li, C., Honda, I., Iwai, Y., & Matsukura, U. (1999). Volatile components in stored rice Oryza sativa (L.) of varieties with and without lipoxygenase-3 in seeds. Journal of Agricultural and Food Chemistry, 47(3), 1119-1124. Tang, S., Hettiarachchy, N., Horax, R., & Eswaranandam, S. (2003). Physicochemical properties and functionality of rice bran protein hydrolyzate prepared from heat‐stabilized defatted rice bran with the aid of enzymes. Journal of Food Science, 68(1), 152-157. Torbica, A., Hadnađev, M., & Dapčević, T. (2010). Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocolloids, 24(6-7), 626-632. Tran, K. N., Witt, T., Gidley, M. J., & Fitzgerald, M. (2018). Accounting for the effect of degree of milling on rice protein extraction in an industrial setting. Food Chemistry, 253, 221-226. Van Dalen, G. (2004). Determination of the size distribution and percentage of broken kernels of rice using flatbed scanning and image analysis. Food research International, 37(1), 51-58. Van Der Borght, A., Vandeputte, G. E., Derycke, V., Brijs, K., Daenen, G., & Delcour, J. A. (2006). Extractability and chromatographic separation of rice endosperm proteins. Journal of Cereal science 2006 v.44 no.1 pp. 68-74. Villareal, R. M., & Juliano, B. O. (1981). Properties of albumins of milled rice. Phytochemistry, 20(8), 1785-1789. Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in food science & technology, 17(6), 300-312. Wang, Y. J., Wang, L., Shephard, D., Wang, F., & Patindol, J. (2002). Properties and structures of flours and starches from whole, broken, and yellowed rice kernels in a model study. Cereal Chemistry, 79(3), 383-386. Xia, N., Wang, J.-M., Gong, Q., Yang, X.-Q., Yin, S.-W., & Qi, J.-R. (2012). Characterization and In Vitro digestibility of rice protein prepared by enzyme-assisted microfluidization: Comparison to alkaline extraction. Journal of Cereal Science, 56(2), 482-489. Yamagata, H., & Tanaka, K. (1986). The site of synthesis and accumulation of rice storage proteins. Plant and Cell Physiology, 27(1), 135-145. Yang, L., Chen, J., Xu, T., Qiu, W., Zhang, Y., Zhang, L., Liu, H. (2011). Rice protein extracted by different methods affects cholesterol metabolism in rats due to its lower digestibility. International journal of molecular sciences, 12(11), 7594-7608. Ye, J., Hu, X., Luo, S., McClements, D. J., Liang, L., & Liu, C. (2018). Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Research International, 106, 404-409. Zhao, Q., Xiong, H., Selomulya, C., Chen, X. D., Huang, S., Ruan, X.,. Sun, W. (2013). Effects of spray drying and freeze drying on the properties of protein isolate from rice dreg protein. Food and Bioprocess Technology, 6(7), 1759-1769. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72584 | - |
dc.description.abstract | 蛋白質為食品中三大營養素之一,亦在食品加工上賦予產品加工功能性。稻米中的米蛋白是生產米糖漿之副產物,具有高營養價值、低致敏性、產量大且價格低廉等優勢。稻米研磨加工過程中會產生 15% 至 30% 的碎米,其原料成本為白米的一半,因此本研究以碎米作為原料,評估碎米提取米蛋白之可行性。第一部分探討不同規格之碎米提取米蛋白之產物性質,結果發現碎米中broken kernel及chips之原料蛋白質含量高於完整米whole kernel,利用澱粉酶提取方法提取米蛋白,顯示出broken kernel rice protein (BRP) 及chips rice protein (CRP) 之蛋白含量及收率皆略低於whole kernel rice protein (WRP),但若於酵素水解澱粉前去除油脂,所製得BRP及CRP 之蛋白含量增加,然而蛋白收率下降。第二部分為不同規格碎米蛋白之品質分析,在顏色方面,脫脂米蛋白之白度指數皆高於WRP、BRP及CRP,且具顯著差異 (P < 0.05),在油脂氧化揮發物方面,顯示碎米蛋白在油脂氧化揮發物上相對含量高,但經過脫油後其含量相對降低,此外,分析不同規格碎米蛋白於pH 7下之水溶性、乳化性及發泡性等加工功能性,各樣品間皆無顯著差異 (P > 0.05)。第三部分為加熱處理對於米蛋白功能性及雙硫鍵含量之影響,結果顯示米蛋白經加熱與否之雙硫鍵含量無顯著影響,實驗也發現鹼萃取法及澱粉酶提取法所提取出之米蛋白,其水溶性及加工功能性並無顯著差異 (P > 0.05)。
本研究結果發現碎米中油脂會使米蛋白之蛋白含量、收率及白度指數下降,但可以利用碎米作為原料提取米蛋白降低生產成本,並增加碎米之經濟效益以提升產業競爭優勢。 | zh_TW |
dc.description.abstract | Protein provides functional properties for food products and essential nutrients for human body. Rice protein, a by-product from the processing of white rice for syrup production, is a low-cost protein source. Broken rice, whose price is half of that for the white rice, is produced during the milling process and is probably a more cost-efficient material for rice protein production. In this study, the feasibility of extracting rice protein from broken rice using enzyme extraction method was evaluated. In the first section, the protein content and recovery of the rice protein from broken rice were determined. The protein content within whole kernel was lower than that within broken kernel and chips. However, higher protein content and recovery was observed in the rice protein extracted from whole kernel (WRP) when compared to that from broken kernel (BRP) and chip (CRP). The protein content of BRP and CRP could be increased by removing the lipids in the rice kernel with hexane before the extraction of rice protein. Nevertheless, removing the lipids in the rice kernel could result in a decreasing in the protein recovery of all the samples. In the second section, the quality of rice protein in samples was evaluated. The whiteness indices of deoiling rice proteins were significantly lower than that of WRP, BRP and CRP (p < 0.05). In terms of volatile compounds, BRP and CRP showed relatively high content of fatty volatiles, but those volatile compounds decreased after deoiling. Among WRP, BRP and CRP, no significant differences in protein solubility, emulsifying activity, foaming activity and other functional properties were observed at pH 7.0 (p > 0.05). In the last section, we focused on the effects of heat treatment on the functionality and the amount of disulfide bonds. No significant differences in functional properties and the amount of disulfide bonds was observed for rice protein underwent thermal processing (p > 0.05).
In conclusion, the lipids of broken rice were the main factor leading to the decrease in rice protein contents, protein recovery and its quality. However, rice protein could be produced from broken kernel and chips, and could reduce the production cost of food and enhance the competitiveness in the food industry. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:01:21Z (GMT). No. of bitstreams: 1 ntu-108-R05628213-1.pdf: 3524122 bytes, checksum: a1ee4e82e1084261e672ce6ccf8a7936 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 I
摘要 III Abstract IV 目錄 VI 表目錄 IX 圖目錄 X 附件目錄 XI 代號說明表 XII 第一章 前人研究 1 第一節 研究背景 1 第二節 米蛋白優勢 2 第三節 米蛋白之製備 4 第四節 米蛋白之理化性質及加工功能性 6 第五節 米蛋白之發展限制 9 第六節 稻米簡介及碾米加工 10 第七節 碎米簡介及優勢 15 第二章 研究動機與目的 19 第三章 材料與方法 21 材料 21 藥品與試劑 21 器材 22 第一節 不同代表性碎米及所提取之米蛋白的基本組成分分析 24 第二節 利用澱粉酶法提取米蛋白 25 第三節 米蛋白之四大類蛋白分析 28 第四節 米蛋白之品質分析 30 第五節 米蛋白之加工功能性分析 31 第六節 熱處理米蛋白 34 第七節 統計分析 36 第四章 研究結果 37 第一節 建立不同規格碎米之基本成分資訊 37 第二節 利用澱粉酶法提取不同規格碎米蛋白 39 第三節 碎米蛋白之收量、組成分 41 第四節 去除碎米油脂並利用澱粉酶法提取米蛋白 41 第五節 去除油脂之碎米蛋白的收量、組成分 42 第六節 碎米蛋白之品質、四大類蛋白組成及加工功能性評估 43 第七節 比較鹼萃取及高溫澱粉酶法對米蛋白加工功能性之影響 46 第八節 萃取過程之高溫處理對米蛋白雙硫鍵含量之影響 47 第五章 討論 48 第一節 不同規格碎米之蛋白組成差異 48 第二節 利用澱粉酶法提取碎米蛋白之製程 49 第三節 碎米蛋白之收率、基本組成成分及品質 50 第四節 碎米蛋白之加工功能性 52 第五節 以碎米提取米蛋白之可行性 53 第六節 比較鹼萃取及高溫澱粉酶法對米蛋白理化性質及加工功能性之影響 55 第六章 結語與未來展望 57 參考文獻 58 TABLES 67 FIGURES 89 | |
dc.language.iso | zh-TW | |
dc.title | 由碎米提取米蛋白之可行性 | zh_TW |
dc.title | Feasibility of Preparing Rice Protein from Broken Rice | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周志輝,繆希樁,蘇南維 | |
dc.subject.keyword | 米蛋白,碎米,澱粉?提取法,澱粉?,加工功能性,雙硫鍵, | zh_TW |
dc.subject.keyword | rice protein,broken rice,enzyme extraction method,amylase,functional properties,disulfide bonds, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU201902250 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-01 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。