Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72583
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor謝馬利歐(Mario Hofmann)
dc.contributor.authorYueh-Yuan Lien
dc.contributor.author李岳原zh_TW
dc.date.accessioned2021-06-17T07:01:20Z-
dc.date.available2021-02-22
dc.date.copyright2021-02-22
dc.date.issued2021
dc.date.submitted2021-01-13
dc.identifier.citation1. Novoselov, K., Fal′ko, V., Colombo, L. et al. (2012). A roadmap for graphene. Nature 490, 192–200.
2. Xu, Y., Cao, H., Xue, Y., Li, B., Cai, W. (2018). Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials (Basel, Switzerland), 8(11), 942.
3. Paton K.R., Varrla E., Backes C., Smith R.J., Khan U., O’Neill A., Boland C., Lotya M., Istrate O.M., King P., et al. (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater., 13, 624–630.
4. Yefeng Zhang, Luzhu Xu, Wesley R. Walker, Collin M. Tittle, Christopher J. Backhouse and Michael A. Pope. (2017) Langmuir films and uniform, large area, transparent coatings of chemically exfoliated MoS2 single layers. Journal of Material Chemistry C,5, 11275-11287
5. E. Kymakis, E. Stratakis, M.M. Stylianakis, E. Koudoumas, C. Fotakis. (2011). Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films, 520, 1238-1241
6. John A. Rogers, Ralph G. Nuzzo (2005). Recent progress in soft lithography. Materials Today, 8(2), 50-56,
1.Majid Monajjemi. (2017). Liquid-phase exfoliation (LPE) of graphite towards graphene: An ab initio study, Journal of Molecular Liquids, 230, 461-472,
2.https://www.silverson.co.uk/
3. Ali Jawaid, Dhriti Nepal, Kyoungweon Park, Michael Jespersen, Anthony Qualley, Peter Mirau, Lawrence F. Drummy, and Richard A. Vaia (2016). Mechanism for Liquid Phase Exfoliation of MoS2. Chemistry of Materials, 28(1), 337-348
4. B.Visica, M. Klanjsek Gunde, J.Kovac, I.Iskra, J.Jelenc, M. Remskar (2013). MoS2 nanotube exfoliation as new synthesis pathway to molybdenum blue. Materials Research Bulletin, 48(2), 802-806
5. nanoScience Instrument, Scanning Electron Microscopy. Retrieved from https://www.nanoscience.com/techniques/scanning-electron-microscopy/
6. Whiteside, Paul Chininis, Jeffrey Hunt, Heather. (2016). Techniques and Challenges for Characterizing Metal Thin Films with Applications in Photonics. Coatings. 6. 35.
1. Mata, A., Fleischman, A.J. Roy, S. (2005) Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems. Biomed Microdevices, 7, 281–293.
2. Xiongheng Bian, Haibo Huang, Liguo Chen. (2019). Motion of droplets into hydrophobic parallel plates. RSC Adv., 9, 32278-32287
3. Brian G. Prevo and Orlin D. Velev. (2004). Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions. Langmuir, 20(6), 2099-2107
4. Bogdan Adnan Haifa, Vladimir Bacarea, Oana Iacob, Tudor Calinici. (2011). Comparison between Digital Image Processing and Spectrophotometric Measurement Methods. Application in Electrophoresis Interpretation. Applied Medical Informatics, 28(1), 29-36
5. Alejandro C. Frery, Talita Perciano. (2013) Introduction to Image Processing Using R: Learning by Example, London, Springer-Verlag London
1. Nico Tucher, Oliver Höhn, Hubert Hauser, ClaasMüller, Benedikt Bläsi. (2017). Characterizing the degradation of PDMS stamps in nanoimprint lithography. Microelectronic Engineering, 180, 40–44
2. Tian, H., Tan, Z., Wu, C. et al. (2015). Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions. Sci Rep 4, 5951.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72583-
dc.description.abstract二維材料,因其獨特的性能以及能從溶液中的塊材前驅物簡單剝離出高品質材料的能力,吸引了研究人員的注意力。為了實現廉價且普及的液體沉積電子產品,必須設計出一種合適的組裝方法,該方法可以保留2D形態並支持複雜的元件幾何形狀。
我們在這裡演示了一種直接從解決方案直接將2D材料沉積到複雜電路中的新方法,而無需在沉積材料後才蝕刻出電路。
通過將液滴限制在二維上,產生了連續的液膜,其程度由楊-拉普拉斯效應和毛細現象、重力的競爭決定。該限制在液滴頂部產生蒸發的方向性,並導致二維薄膜後退。與此同時,流向液滴邊緣的液流會推動石墨烯材料向邊緣移動,進而產生厚度、寬度均勻的1D分布。
所得的1D圖案在毫米級圖形上顯示出微小的寬度和良好的均勻性,非常適合電子設備。我們通過使用石墨烯形成的晶體管來演示複雜電路的形成。
zh_TW
dc.description.abstract2D materials have captured the attention of researchers due to their unique properties and the ability to produce high-quality material by simple exfoliation from bulk precursors in solution. To realize the vision of cheap and ubiquitous, liquid-deposited electronics, a suitable assembly method has to be devised that retains the 2D morphology and supports complicated device geometries.
We here demonstrate a new method of depositing 2D materials into complex circuits directly from solution without the need for post-deposition patterning.
By confining a liquid droplet in two dimensions, a continuous liquid film is produced whose extents are determined by the competition of Young-Laplace equation, gravity and capillary force. The confinement produces a preferential direction of evaporative liquid loss on the top of the droplet and results in receding 2D film. Such a receding motion of liquid produces a flow that brings solute to the edge, resulting in deposition of the dispersed 2D material in a well-defined region.
The resulting 1D patterns exhibit a microscopic width and good uniformity over millimeter-scale and lend themselves to electrical devices. We demonstrate the formation of complex electrical circuits through when using graphene and transistors formed from graphene/MoS2.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:01:20Z (GMT). No. of bitstreams: 1
U0001-1201202121480500.pdf: 4803089 bytes, checksum: 60609b1e1f54ea36341df6d0995b28c6 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsChapter 1 Introduction ..................................................................................................1
Chapter 2 Experiment Details .......................................................................................4
2.1 Experiment instruments ..................................................................................4
2.1.1 Shear mixer ..........................................................................................4
2.1.2 Silhouette Curio craft cutter ………………………………………….6
2.1.3 3D printer …………………………………………………………….8
2.1.4 Thermal evaporator …………………………………………………..9
2.1.5 Langmuir-Blodgett machine ………………………………………..12
2.2 Fabrication …………………………………………………………………13
2.2.1 Graphene solution …………………………………………………..13
2.2.2 PDMS substrate ……………………………………………………..13
2.2.3 Sample fabrication process ………………………………………….14
2.2.3.1 Graphene solution ……………………………………….......14
2.2.3.2 Molybdenum disulfide solution ……………………………..15
2.2.3.3 Deposition …………………………………………………...16
2.3 Characterization tools ………………………………………………………18
2.3.1 Atomic force microscope (AFM) …………………………………...18
2.3.2 Raman spectroscopy ………………………………………………...19
2.3.3 Scanning Electron microscope (SEM) ……………………………...20
2.3.4 Web camera ………………………………………………………....21
2.3.5 Current voltage measurement ………………………………………22
2.4 Software ……………………………………………………………………23
2.4.1 Python 3.5/3.7 ………………………………………………………23
2.4.2 Anaconda 3.5 ………………………………………………………..23
2.4.3 Libraries: Opencv, Numpy and Matplotlib ……………………….…23
Chapter 3 Result and Discussions ...............................................................................25
3.1 Liquid phase graphene ……………………………………………………...25
3.2 Electrode deposition ………………………………………………………..26
3.3 Graphene deposition ………………………………………………………..26
3.3.1 ODE method ………………………………………….……………..27
3.3.2 LB machine method ………………………………….……………..28
3.3.2.1 Plasma treatment …………………………….………………30
3.3.3 Spray method ………………………….…………………………….32
3.3.4 Graphene ink injection …………….………………………………..33
3.3.5 Brief conclusion ………….………………………………………....35
3.4 Characterization ………….……………………………….………………...35
3.4.1 Image ……….………………………….........…….………………...35
3.4.2 Absorbance ………………………….........…….……………….......44
3.5 Mechanism ………………………….........…….………………..................46
3.6 Sample result ……...……………….........…….………………....................50
3.7 Conclusion …………………............…….………………............................53
Chapter 4 Future work and Reference .........................................................................55
4.1 Nanoimprint lithography ...............................................................................55
4.2 Programmable automatic graphene ink injecting ..........................................56
4.3 2D material heterojunction ............................................................................57
4.4 T-shape transistor ...........................................................................................58
Reference .............................................................................................................59
dc.language.isoen
dc.subject石墨烯zh_TW
dc.subject二維材料zh_TW
dc.subjectgrapheneen
dc.subject2D materialen
dc.title蒸發驅動二維材料塗佈形成圖形zh_TW
dc.titleEvaporation-driven 2D material deposition into complex patternsen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永芳(Yang-Fang Chen),張顏暉(Yuan-Huei Chang),謝雅萍(Ya-Ping Hsieh)
dc.subject.keyword二維材料,石墨烯,zh_TW
dc.subject.keyword2D material,graphene,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202100049
dc.rights.note有償授權
dc.date.accepted2021-01-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
Appears in Collections:應用物理研究所

Files in This Item:
File SizeFormat 
U0001-1201202121480500.pdf
  Restricted Access
4.69 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved