請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72580完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張鈞棣 | |
| dc.contributor.author | Jung-Yu Liu | en |
| dc.contributor.author | 劉鎔瑜 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:01:17Z | - |
| dc.date.available | 2019-08-05 | |
| dc.date.copyright | 2019-08-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-31 | |
| dc.identifier.citation | [1] H. Takasaki, 'Moiré Topography,' Applied Optics, vol. 9, no. 6, pp. 1467-1472, 1970/06/01 1970.
[2] J. L. Zable, 'Splatter during ink jet printing,' IBM J. Res. Dev., vol. 21, no. 4, pp. 315-320, 1977. [3] R. Andrade, O. Skurtys, and F. Osorio, 'Drop impact behavior on food using spray coating: Fundamentals and applications,' Food Research International, vol. 54, no. 1, pp. 397-405, 2013. [4] B. P. Kneubuehl, 'Maximum flight velocity of blood drops in analysing blood traces,' Forensic Science International, vol. 219, no. 1, pp. 205-207, 2012/06/10/ 2012. [5] S. L. Post and J. Abraham, 'Modeling the outcome of drop–drop collisions in Diesel sprays,' International Journal of Multiphase Flow, vol. 28, no. 6, pp. 997-1019, 2002/06/01/ 2002. [6] B. E. Dixon and A. A. W. Russell, 'The absorption of carbon dioxide by liquid drops,' Journal of the Society of Chemical Industry, vol. 69, no. 9, pp. 284-288, 1950. [7] T.-H. Kim and H.-Y. Kim, 'Disruptive bubble behaviour leading to microstructure damage in an ultrasonic field,' Journal of Fluid Mechanics, vol. 750, pp. 355-371, 2014. [8] F. Reuter, S. Lauterborn, R. Mettin, and W. Lauterborn, 'Membrane cleaning with ultrasonically driven bubbles,' Ultrasonics Sonochemistry, vol. 37, pp. 542-560, 2017/07/01/ 2017. [9] M. Szakáll, S. K. Mitra, K. Diehl, and S. Borrmann, 'Shapes and oscillations of falling raindrops — A review,' Atmospheric Research, vol. 97, no. 4, pp. 416-425, 2010. [10] F. R. S. L. Rayleigh, 'On the capillary phenomena of jets,' Proc. R. Soc. London, vol. 29, pp. 71-97, 1879. [11] H. Lamb, 'Hydro Dynamic sixth edition,' Cambridge university press, 1932. [12] M. Perez, Y. Brechet, L. Salvo, M. Papoular, and M. Suery, 'Oscillation of liquid drops under gravity: Influence of shape on the resonance frequency,' Europhysics Letters (EPL), vol. 47, no. 2, pp. 189-195, 1999/07/15 1999. [13] H. Azuma and S. Yoshihara, 'Three-dimensional large-amplitude drop oscillations: experiments and theoretical analysis,' Journal of Fluid Mechanics, vol. 393, pp. 309-332, 1999. [14] C. L. Shen, W. J. Xie, and B. Wei, 'Parametrically excited sectorial oscillation of liquid drops floating in ultrasound,' Phys Rev E Stat Nonlin Soft Matter Phys, vol. 81, no. 4 Pt 2, p. 046305, Apr 2010. [15] N. J. Holter, Glasscock, and W. R., 'Vibrations of Evaporating Liquid Drops,' The Journal of the Acoustical Society of America, vol. 24, no. 6, pp. 682-686, 1952. [16] E. Trinh, A. Zwern, and T. G. Wang, 'An experimental study of small-amplitude drop oscillations in immiscible liquid systems,' Journal of Fluid Mechanics, vol. 115, pp. 453-474, 1982. [17] E. Trinh and T. G. Wang, 'Large-amplitude free and driven drop-shape oscillations: experimental observations,' Journal of Fluid Mechanics, vol. 122, pp. 315-338, 1982. [18] C. B. A. A. L. H. Rodot, 'Zero-gravity simulation of liquids in contact with a solid surface,' Pergamon Press Ltd., vol. 6, pp. pp. 1083-1092 1979. [19] S. Mettu and M. K. Chaudhury, 'Vibration spectroscopy of a sessile drop and its contact line,' Langmuir, vol. 28, no. 39, pp. 14100-6, Oct 2 2012. [20] J. S. Sharp, D. J. Farmer, and J. Kelly, 'Contact angle dependence of the resonant frequency of sessile water droplets,' Langmuir, vol. 27, no. 15, pp. 9367-71, Aug 2 2011. [21] O. Morihiro and O. Minoru, 'Observation of the shape of a water drop on an oscillating Teflon plate,' Experiments in Fluids, vol. 41, no. 5, pp. 789-802, 2006. [22] S. Dorbolo, D. Terwagne, N. Vandewalle, and T. Gilet, 'Resonant and rolling droplet,' New Journal of Physics, vol. 10, no. 11, 2008. [23] J. B. Bostwick and P. H. Steen, 'Dynamics of sessile drops. Part 1. Inviscid theory,' Journal of Fluid Mechanics, vol. 760, pp. 5-38, 2014. [24] N. Yoshiyasu, K. Matsuda, and R. Takaki, 'Self-Induced Vibration of a Water Drop Placed on an Oscillating Plate,' Journal of the Physical Society of Japan, vol. 65, no. 7, pp. 2068-2071, 1996/07/15 1996. [25] R. Natarajan and R. A. Brown, 'Third-order resonance effects and the nonlinear stability of drop oscillations,' Journal of Fluid Mechanics, vol. 183, no. -1, p. 95, 2006. [26] H. Rodot, C. Bisch, and A. Lasek, 'Zero-gravity simulation of liquids in contact with a solid surface,' Acta Astronautica, vol. 6, no. 9, pp. 1083-1092, 1979/09/01/ 1979. [27] X. Noblin, A. Buguin, and F. Brochard-Wyart, 'Triplon modes of puddles,' Phys Rev Lett, vol. 94, no. 16, p. 166102, Apr 29 2005. [28] C.-T. Chang, J. B. Bostwick, S. Daniel, and P. H. Steen, 'Dynamics of sessile drops. Part 2. Experiment,' Journal of Fluid Mechanics, vol. 768, pp. 442-467, 2015. [29] C. T. Chang, J. B. Bostwick, P. H. Steen, and S. Daniel, 'Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops,' Phys Rev E Stat Nonlin Soft Matter Phys, vol. 88, no. 2, p. 023015, Aug 2013. [30] F. Liu, N. Kang, Y. Li, and Q. Wu, 'Experimental investigation on the atomization of a spherical droplet induced by Faraday instability,' Experimental Thermal and Fluid Science, vol. 100, pp. 311-318, 2019. [31] S. Sudo, A. G. , H. K. , Y. H. , T. Y. , and a. K. Hoshika, 'The Dynamic Behavior of Liquid Droplets on Vibrating Plate,' Journal of JSEM, vol. 10, pp. 38-45, 2010. [32] B. Vukasinovic, M. K. Smith, and A. R. I. Glezer, 'Dynamics of a sessile drop in forced vibration,' Journal of Fluid Mechanics, vol. 587, pp. 395-423, 2007. [33] T. B. Benjamin and F. Ursell, 'The Stability of the Plane Free Surface of a Liquid in Vertical Periodic Motion,' Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 225, no. 1163, pp. 505-515, 1954. [34] R. J. Lang, 'Ultrasonic Atomization of Liquids,' The Journal of the Acoustical Society of America, vol. 34, no. 1, pp. 6-8, 1962. [35] P. H. Steen, C. T. Chang, and J. B. Bostwick, 'Droplet motions fill a periodic table,' Proc Natl Acad Sci U S A, vol. 116, no. 11, pp. 4849-4854, Mar 12 2019. [36] E. G. K.Ohsak. E.H.Trinh. M, 'Undercooling of acoustically levitated molten drops,' Journal of Crystal Growth, vol. 106, no. 2-3, pp. 191-196, 1990. [37] M. K. P. Fopp, F. Kargl, and R. Kobold, 'Effect of the hypercooling limit on the crystal growth velocity,' 2018. [38] S. Jung, M. Dorrestijn, D. Raps, A. Das, C. M. Megaridis, and D. Poulikakos, 'Are superhydrophobic surfaces best for icephobicity?,' Langmuir, vol. 27, no. 6, pp. 3059-66, Mar 15 2011. [39] C. G. Levi and R. Mehrabian, 'Heat Flow during Rapid Solidification of Undercooled Metal Droplets,' Metallurgical Transactions A, journal article vol. 13, no. 2, pp. 221-234, February 01 1982. [40] T. Buttersack, V. C. Weiss, and S. Bauerecker, 'Hypercooling Temperature of Water is about 100 K Higher than Calculated before,' J Phys Chem Lett, vol. 9, no. 3, pp. 471-475, Feb 1 2018. [41] R. Willnecker, D. M. Herlach, and B. Feuerbacher, 'Evidence of nonequilibrium processes in rapid solidification of undercooled metals,' Phys Rev Lett, vol. 62, no. 23, pp. 2707-2710, Jun 5 1989. [42] S. Jung, M. K. Tiwari, N. V. Doan, and D. Poulikakos, 'Mechanism of supercooled droplet freezing on surfaces,' Nat Commun, vol. 3, p. 615, Jan 10 2012. [43] L. Huang, Z. Liu, Y. Liu, Y. Gou, and L. Wang, 'Effect of contact angle on water droplet freezing process on a cold flat surface,' Experimental Thermal and Fluid Science, vol. 40, pp. 74-80, 2012. [44] L. Boinovich, A. M. Emelyanenko, V. V. Korolev, and A. S. Pashinin, 'Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay,' Langmuir, vol. 30, no. 6, pp. 1659-68, Feb 18 2014. [45] T. V. Vu, G. Tryggvason, S. Homma, and J. C. Wells, 'Numerical investigations of drop solidification on a cold plate in the presence of volume change,' International Journal of Multiphase Flow, vol. 76, pp. 73-85, 2015. [46] X. Z. Xin Liu, Jingchun Min, 'Freezing simulations of static supercooled water droplet on a cold surface,' 2017. [47] C.-C. Chin-HsiangCheng, 'Oscillation effects on frost formation and liquid droplet solidification on a cold plate in atmospheric air flow,' International Journal of Refrigeration, vol. 26, no. 1, pp. 69-78, 2003. [48] F. Yang, O. Cruikshank, W. He, A. Kostinski, and R. A. Shaw, 'Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops,' Physical Review E, vol. 97, no. 2, p. 023103, Feb 2018. [49] G. F. Strouse, 'Standard Reference Material 1751:Gallium Melting-Point Standard,' NIST Special Publication, no. 260-157, 2004. [50] D. Turnbull, 'Formation of Crystal Nuclei in Liquid Metals,' Journal of Applied Physics, vol. 21, no. 10, pp. 1022-1028, 1950. [51] A. Ayyad and F. Aqra, 'Theoretical consideration of the anomalous temperature dependence of the surface tension of pure liquid gallium,' Theoretical Chemistry Accounts, vol. 127, no. 5-6, pp. 443-448, 2010. [52] S. C. Hardy, 'The surface tension of liquid gallium,' Journal of Crystal Growth, vol. 71, no. 3, pp. 602-606, 1985/05/01/ 1985. [53] Q. Xu, N. Oudalov, Q. Guo, H. M. Jaeger, and E. Brown, 'Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium,' Physics of Fluids, vol. 24, no. 6, p. 063101, 2012. [54] M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, 'Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature,' Advanced Functional Materials, vol. 18, no. 7, pp. 1097-1104, 2008. [55] T. Liu, P. Sen, and C.-J. Kim, 'Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices,' Journal of Microelectromechanical Systems, vol. 21, no. 2, pp. 443-450, 2012. [56] F. MANSFELD, 'Area Relationships in Galvanic Corrosion,' vol. 27, no. 10, pp. 436-442, 1971. [57] N. Laan, K. G. de Bruin, D. Bartolo, C. Josserand, and D. Bonn, 'Maximum Diameter of Impacting Liquid Droplets,' Physical Review Applied, vol. 2, no. 4, 2014. [58] B. Vukasinovic, M. K. Smith, and A. R. I. Glezer, 'Dynamics of a sessile drop in forced vibration,' Journal of Fluid Mechanics, vol. 587, 2007. [59] B. T. Ng, Y. M. Hung, and M. K. Tan, 'Suppression of the Leidenfrost effect via low frequency vibrations,' Soft Matter, vol. 11, no. 4, pp. 775-84, Jan 28 2015. [60] A. Shahriari, O. Ozkan, and V. Bahadur, 'Electrostatic Suppression of the Leidenfrost State on Liquid Substrates,' Langmuir, vol. 33, no. 46, pp. 13207-13213, Nov 21 2017. [61] A. Shahriari, S. Das, V. Bahadur, and R. T. Bonnecaze, 'Analysis of the instability underlying electrostatic suppression of the Leidenfrost state,' Physical Review Fluids, vol. 2, no. 3, 2017. [62] S.-H. Hsu, Y.-H. Ho, M.-X. Ho, J.-C. Wang, and C. Pan, 'On the formation of vapor film during quenching in de-ionized water and elimination of film boiling during quenching in natural sea water,' International Journal of Heat and Mass Transfer, vol. 86, pp. 65-71, 2015. [63] A. Oliveira, D. Medeiros, and R. Gonçalves dos Santos, Determination of boiling critical temperatures of pure and binary mixtures of water and ethanol by droplet evaporation. 2015. [64] U. F. J. a. T. G. I. Benjamin Thomas Brooke, 'The stability of the plane free surface of a liquid in vertical periodic motion,' Proceedings of the Royal Society of London, vol. 225, no. 1163, 1954. [65] 'Transport phenomena, R. B. Bird, W. E. Stewart, and E. N. Lightfoot, John Wiley and Sons, Inc., New York (1960). 780 pages. $11.50,' vol. 7, no. 2, pp. 5J-6J, 1961. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72580 | - |
| dc.description.abstract | 本研究旨在觀察平板上液滴的各個共振模態受加速度、頻率的影響,並嘗試使用低溫流體進行急速固化以保存瞬間的共振外型。本研究使用金屬鎵作為實驗流體,並用環狀 LED 作為光源,再由液滴反射的光環形狀判別共振的外型。本研究成功觸發 16 種已被發現的共振模態。其中有 2~8 邊形的 sectoral、4 種 zonal 和 5種 tesseral 模態。除這 16 種模態之外,本研究還觀察到多種振幅不固定的不穩定大振幅模態以及伴隨 2~4 邊形的'跳躍'模態。本研究發現到 sectoral 模態的振幅與頻率成呈負三次方的關係,且觸發各 sectoral 模態所需要的受力是固定的,並不會受液滴體積變化而改變。本研究發現到共振液滴固化時的過程與固化完的形狀因液滴共振振幅與不同液體而有所不同,並不會受共振模態影響。然而,實驗與計算結果皆顯示,固化時間比預期時間長上許多。因此,我們無法使用急速固化的方式保存液滴的共振外型。 | zh_TW |
| dc.description.abstract | This research is trying to find out the influence of the acceleration and the frequency of a sessile resonating drop. Also, this research is trying to maintain the resonance shape of the drop by using cold fluid to freeze it. The experimental fluid is gallium. We used aLED halo as the lighting method. From the reflection of the halo on the surface of the drop, we could tell the shape of the resonating drop. In this research, we found 16 modes which had been found before, including 7 sectoral modes, 4 zonal modes and 5 tesseral modes. In addition to these 16 modes, we also found several unstable sectoral modes which don’t have the same amplitude in every crest, and 3 jumping modes with different polygon shapes. We found the relation between the frequency and the amplitude. The experiment result shows that the force thresholds of sectoral modes are independent of the volume of the drop. In other words, if the volume of the resonating drop increases, the minimum force to trigger the specific sectoral mode will still be the same. We found that the shape of the solidification drop depends on fluid and the wave amplitude, not the resonance mode. Additionally, the experiment and the calculation results show that it’s impossible to maintain the resonance shape by using solidification. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:01:17Z (GMT). No. of bitstreams: 1 ntu-108-R06522121-1.pdf: 3200541 bytes, checksum: 8e74b67ca8d08b2a7b7f41a639b51f82 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 IV 圖表目錄 V 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 1 第二章 實驗器材與設置 14 2.1 實驗架設 14 2.2 實驗流體 15 2.3 模態辨識與攝影方法 19 2.4 液滴固化方法 23 第三章 實驗結果與討論 25 3.1 液滴共振結果討論 25 3.2 液滴固化結果討論 40 第四章 結論 43 參考文獻 45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 振幅 | zh_TW |
| dc.subject | 模態 | zh_TW |
| dc.subject | 固化 | zh_TW |
| dc.subject | Solidification | en |
| dc.subject | Mode | en |
| dc.subject | Amplitude | en |
| dc.title | 平板上共振液滴之固化 | zh_TW |
| dc.title | Solidification of Resonating Sessile Drop | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇偉?,廖英志 | |
| dc.subject.keyword | 模態,固化,振幅, | zh_TW |
| dc.subject.keyword | Mode,Solidification,Amplitude, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU201902282 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
