Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72578
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐宏民
dc.contributor.authorHsin-Yu Hsuen
dc.contributor.author許芯瑜zh_TW
dc.date.accessioned2021-06-17T07:01:15Z-
dc.date.available2019-08-05
dc.date.copyright2019-08-05
dc.date.issued2019
dc.date.submitted2019-07-31
dc.identifier.citation[1]J. Canny. A computational approach to edge detection.TPAMI, 1986.
[2]J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: Alarge-scale hierarchical image database. InCVPR, 2009.
[3]S. F. Dodge and L. J. Karam. Understanding how image quality affects deep neural networks.QoMEX, 2016.
[4]C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convo-lutional networks.TPAMI, 2016.
[5]C. Dong, C. C. Loy, and X. Tang. Accelerating the super-resolution convolutional neural network. InECCV, 2016.
[6]K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.InCVPR, 2016.
[7]G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. InCVPR, 2017.
[8]N. Jenkins. Video surveillance camera installed base report. 2015.
[9]J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-resolution using verydeep convolutional networks. InCVPR, 2016.
[10]J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive convolutional network forimage super-resolution. InCVPR, 2016.
[11]W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H.Yang. Deep laplacian pyramid networks for fast and accurate super-resolution. InCVPR, 2017.
[12]C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative adversarial network. InCVPR, 2017.
[13]D. Li, X.Chen, and K. Huang. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios. InACPR, 2015.
[14]D. Li, Z. Zhang, X. Chen, H. Ling, and K. Huang. A richly annotated dataset for pedestrian attribute recognition.CoRR, 2016.
[15]Y. Li, C. Huang, C. C. Loy, and X. Tang. Human attribute recognition by deep hierarchical contexts. InECCV, 2016.
[16]P. Liu, X. Liu, J. Yan, and J. Shao. Localization guided learning for pedestrian attribute recognition. InBMVC, 2018.
[17]X. Liu, H. Zhao, M. Tian, L. Sheng, J. Shao, S. Yi, J. Yan, and X. Wang. Hydraplus-net: Attentive deep features for pedestrian analysis. InICCV, 2017.
[18]S. Park and S.-C.Zhu. Attributed grammars for joint estimation of human attributes part and pose. InICCV, 2015.
[19]M. S. Sarfraz, A. Schumann, Y. Wang, and R. Stiefelhagen. Deep view-sensitive pedestrian attribute inference in an end-to-end model. InBMVC, 2017.
[20]W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, andZ. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. InCVPR, 2016.
[21]K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scaleimage recognition. InICLR, 2015.
[22]C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-houcke, and A. Rabinovich. Going deeper with convolutions. InCVPR, 2015.
[23]C. C. L. X. T. Y. Deng, P. Luo. Pedestrian attribute recognition at far distance. InACM MM, 2014.
[24]N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev. Panda: Pose aligned networks for deep attribute modeling. InCVPR, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72578-
dc.description.abstract行人特徵辨識在電腦視覺領域中一直是個很重要且對人類社會有價值的問題,因為其應用廣泛,從安全領域到商業領域都有其應用價值。而行人姿勢、照片光線、背景複雜、細微特徵的問題都使得行人特徵辨識這個問題的難度更大。目前已經有許多研究都提出相對應的解決方法來處理上述的問題,但都忽略了從低成本的監視器的獲取的相片的品質是遠低於一般相機的。而從其他研究中,我們可以得知相片品質是會影響機器無法習得穩健的特徵以進行正確的分類。在這篇研究中,我們透過增加機器學習的資訊量,並讓機器自己去選擇對自己學習有利的資訊,屏除不利於學習的部分,重新組合成最適合機器去學習的相片。在這樣的機制底下,我們可以減低照片品質的影響,例如雜訊,藉此讓機器可以習得更穩健的特徵,以達到更高的分類準確度。我們將我們提出的網路架構實驗在目前行人特徵辨識最大的兩個資料集上 (PA-100K, RAP),透過一系列的實驗去證明我們提出的架構確實可以幫助提高機器分類的準確度,也可以有效地減低雜訊的影響並維持一定的分類準確度,在消融實驗中也可以佐證我們架構中的每個部份都有利於機器分類的準確度。從實驗中也可以觀察到,我們的方法用於一般的分類網路上即可勝過目前在行人特徵辨識問題中表現最好的方法,而我們的方法更可進一步地用於目前表現最好的分類網路上,達到更高的準確度。zh_TW
dc.description.abstractPedestrian attribute recognition is an important and valuable task in computer vision field attributed to its extensive application, such as person retrieval with attributes, marketing strategy building and person re-identification. However, it is also a challenging task due to various viewpoints, poses, illumination, backgrounds and fine-grained attributes. Although many methods have been proposed in order to deal with these issues, they neglect low image quality issue which often occurred in surveillance camera. Dodge also clarify in their work that image quality will affect machine do classification. To handle this issue, we propose a way to increase more samples and make model to learn how to select useful region in different images in order to combine a new image for more efficient learning. In this way, our model can reduce the influence of low image quality (e.g. noise) and learn the more robust features for more accurate classification. We evaluate on two biggest pedestrian attribute recognition datasets (PA-100K, RAP) through a series of experiments and ablation studies to verify our model can improve the classification accuracy further and showcase the effectiveness of the proposed architecture. Experimental results also demonstrate that our method which add on the common classification networks can outperforms other state-of-the-arts. Furthermore, our method can add on the state-of-the-arts and improve the accuracy further.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:01:15Z (GMT). No. of bitstreams: 1
ntu-108-R06922087-1.pdf: 1391509 bytes, checksum: 8a1b0d1ee7ac3b5e5f23f0af3310157d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . iv
1 Introduction. . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Definition. . . . . . . . . . . . . . . .1
1.2 Motivation. . . . . . . . . . . . . . . . . . . . . .1
1.3 Contribution. . . . . . . . . . . . . . . . . . . . 2
2 Related Works. . . . . . . . . . . . . . . . . . . .4
2.1 Pedestrian attribute Recognition. . . .4
2.2 Super-resolution. . . . . . . . . . . . . . . . 5
3 Method. . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Pixel Separation. . . . . . . . . . . . . . . . . 7
3.2 Super-resolution Network. . . . . . . . . 8
3.3 Combination Network. . . . . . . . . . . . .9
3.4 Classification Network. . . . . . . . . . . 10
3.5 Learning Target. . . . . . . . . . . . . . . . . .10
4 Experimental Setting. . . . . . . . . . . . . . 12
4.1 Datasets. . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Evaluation Metrics. . . . . . . . . . . . . . . 13
4.3 Implementation. . . . . . . . . . . . . . . . . .14
5 Results. . . . . . . . . . . . . . . . . . . . . . . . . .16
5.1 Training Pipeline. . . . . . . . . . . . . . . . . 16
5.2 Improvements on Baseline. . . . . . . . . 17
5.3 Comparison with State-of-the-arts. . 17
5.4 Noise Experiment. . . . . . . . . . . . . . . . .18
5.5 Ablation Studies. . . . . . . . . . . . . . . . . .21
5.6 Visualization Results. . . . . . . . . . . . . . 24
6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . 28
Bibliography. . . . . . . . . . . . . . . . . . . . . . . .29
dc.language.isoen
dc.subject低相片品質zh_TW
dc.subject行人特徵辨識zh_TW
dc.subject超解析度技術zh_TW
dc.subject深度學習zh_TW
dc.subjectDeep learningen
dc.subjectLow image qualityen
dc.subjectSuper-resolutionen
dc.subjectPedestrian attribute recognitionen
dc.title基於深度學習於低照片品質下的行人特徵辨識zh_TW
dc.titlePedestrian Attribute Recognition under Low Image Qualityen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文進,葉梅珍,余能豪,黃俊翔
dc.subject.keyword行人特徵辨識,低相片品質,超解析度技術,深度學習,zh_TW
dc.subject.keywordPedestrian attribute recognition,Low image quality,Super-resolution,Deep learning,en
dc.relation.page31
dc.identifier.doi10.6342/NTU201902303
dc.rights.note有償授權
dc.date.accepted2019-08-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved