Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72572
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor涂世隆(Shih-Long Tu)
dc.contributor.authorChien-Chang Wangen
dc.contributor.author王健彰zh_TW
dc.date.accessioned2021-06-17T07:01:08Z-
dc.date.available2021-01-20
dc.date.copyright2021-01-20
dc.date.issued2020
dc.date.submitted2021-01-15
dc.identifier.citationBertram MJ, Bérubé NG, Hang-Swanson X, Ran Q, Leung JK, Bryce S, Spurgers K, Bick RJ, Baldini A, Ning Y, Clark LJ, Parkinson EK, Barrett JC, Smith JR, Pereira-Smith OM (1999) Identification of a gene that reverses the immortal phenotype of a subset of cells and is a member of a novel family of transcription factor-like genes. Mol Cell Biol 19: 1479-1485
Bertram MJ, Pereira-Smith OM (2001) Conservation of the MORF4 related gene family: identification of a new chromo domain subfamily and novel protein motif. Gene 266: 111-121
Bowman BR, Moure CM, Kirtane BM, Welschhans RL, Tominaga K, Pereira-Smith OM, Quiocho FA (2006) Multipurpose MRG domain involved in cell senescence and proliferation exhibits structural homology to a DNA-interacting domain. Structure 14: 151-158
Brumwell A, Fell L, Obress L, Uniacke J (2020) Hypoxia influences polysome distribution of human ribosomal protein S12 and alternative splicing of ribosomal protein mRNAs. RNA 26: 361-371
Bu Z, Yu Y, Li Z, Liu Y, Jiang W, Huang Y, Dong AW (2014) Regulation of arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. PLoS Genet 10: e1004617
Burgess J, Linstead PJ (1981) Studies on the growth and development of protoplasts of the moss, Physcomitrella patens, and its control by light. Planta 151: 331-338
Charron JB, He H, Elling AA, Deng XW (2009) Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21: 3732-3748
Cheng YL, Tu SL (2018) Alternative splicing and cross-talk with light signaling. Plant Cell Physiol 59: 1104-1110
Cui Z, Tong A, Huo Y, Yan Z, Yang W, Yang X, Wang XX (2017) SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis. BMC Biol 15: 80
de Almeida SF, Grosso AR, Koch F, Fenouil R, Carvalho S, Andrade J, Levezinho H, Gut M, Eick D, Gut I, Andrau JC, Ferrier P, Carmo-Fonseca M (2011) Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol 18: 977-983
Godoy Herz MA, Kubaczka MG, Brzyzek G, Servi L, Krzyszton M, Simpson C, Brown J, Swiezewski S, Petrillo E, Kornblihtt AR (2019) Light regulates plant alternative splicing through the control of transcriptional elongation. Mol Cell 73: 1066-1074
Gomez Acuna LI, Fiszbein A Fau - Allo M, Allo M Fau - Schor IE, Schor Ie Fau - Kornblihtt AR, Kornblihtt AR (2013) Connections between chromatin signatures and splicing. WIREs RNA 4: 77-91
Grasser M, Grasser KD (2018) The plant RNA polymerase II elongation complex: A hub coordinating transcript elongation and mRNA processing. Transcription 9: 117-122
Gunderson FQ, Johnson TL (2009) Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLoS Genet 5: e1000682
Guo L, J Z, Elling AA, JB C, Deng X (2008) Histone modifications and expression of light-regulated genes in Arabidopsis are cooperatively influenced by changing light conditions. Plant Physiol 147: 2070-2083
Hajheidari M, Koncz C, Eick D (2013) Emerging roles for RNA polymerase II CTD in Arabidopsis. Trends Plant Sci 18: 633-643
Hansen JC, Tse C, Wolffe AP (1998) Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37: 17637-17641
Hartmann L, Drewe-Boss P, Wiessner T, Wagner G, Geue S, Lee HC, Obermuller DM, Kahles A, Behr J, Sinz FH, Ratsch G, Wachter A (2016) Alternative splicing substantially diversifies the transcriptome during early photomorphogenesis and correlates with the energy availability in Arabidopsis. Plant Cell 28: 2715-2734
Hsin JP, Manley JL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26: 2119-2137
Jenkins GI, Cove DJ (1983) Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of mutant strains. Planta 159: 432-438
Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074-1080
Kanno T, Lin WD, Fu JL, Chang CL, Matzke AJM, Matzke M (2017) A genetic screen for pre-mRNA splicing mutants of Arabidopsis thaliana identifies putative U1 snRNP components RBM25 and PRP39a. Genetics 207: 1347-1359
Kent WJ (2002) BLAT—The BLAST-like alignment tool. Genome Res 12: 656-664
Kim S, Kim H, Fong N, Erickson B, Bentley DL (2011) Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc Natl Acad Sci U S A 108: 13564-13569
Kornblihtt AR, Schor Ie Fau - Allo M, Allo M Fau - Dujardin G, Dujardin G Fau - Petrillo E, Petrillo E Fau - Munoz MJ, Munoz MJ (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14: 153-165
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Meth 9: 357-359
Lin BY, Shih CJ, Hsieh HY, Chen HC, Tu SL (2019) Phytochrome coordinates with a hnRNP to regulate alternative splicing via an exonic splicing silencer. Plant Physiol 182: 243-254
Liu CY, Lu FL, Cui X, Cao XF (2010) Histone Methylation in Higher Plants. Plant Biol 61: 395-420
Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T (2011) Epigenetics in alternative pre-mRNA splicing. Cell 144: 16-26
Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Regulation of alternative splicing by histone modifications. Science 327: 996-1000
Mahrez W, Shin J, Munoz-Viana R, Figueiredo DD, Trejo-Arellano MS, Exner V, Siretskiy A, Gruissem W, Kohler C, Hennig L (2016) BRR2a Affects Flowering Time via FLC Splicing. PLoS Genet 12: e1005924
Mancini E, Sanchez SE, Romanowski A, Schlaen RG, Sanchez-Lamas M, Cerdan PD, Yanovsky MJ (2016) Acute effects of light on alternative splicing in light-grown plants. JPPA 92: 126-133
Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6: 838-849
Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 21: 6782-6795
Mitterer V, Murat G, Rety S, Blaud M, Delbos L, Stanborough T, Bergler H, Leulliot N, Kressler D, Pertschy B (2016) Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation. Nat Commun 7: 10336
Mittmann F, Brucker G, Zeidler M, Repp A, Abts T, Hartmann E, Hughes J (2004) Targeted knockout in Physcomitrella reveals direct actions of phytochrome in the cytoplasm. Proc Natl Acad Sci U S A 101: 13939-13944
Mockler TC, Yu X, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, Chory J, Lin C (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc Natl Acad Sci U S A 101: 12759-12764
Naftelberg S, Schor IE, Ast G, Kornblihtt AR (2015) Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 84: 165-198
Nibau C, Gallemi M, Dadarou D, Doonan JH, Cavallari N (2019) Thermo-Sensitive Alternative Splicing of FLOWERING LOCUS M Is Modulated by Cyclin-Dependent Kinase G2. Front Plant Sci 10: 1680
Pajoro A, Severing E, Angenent GC, Immink RGH (2017) Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biol 18: 102
Peng M, Li Z, Zhou N, Ma M, Jiang Y, Dong A, Shen WH, Li L (2018) Linking PHYTOCHROME-INTERACTING FACTOR to histone modification in plant shade avoidance. Plant Physiol 176: 1341-1351
Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, Altieri F, Pimpinelli S (2009) Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet 5: e1000670
Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA (2012) Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 8: e1002717
Qi HD, Lin Y, Ren QP, Wang YY, Xiong F, Wang XL (2019) RNA Splicing of FLC Modulates the Transition to Flowering. Front Plant Sci 10: 1625
Shi Z, Fujii K, Kovary KM, Genuth NR, Rost HL, Teruel MN, Barna M (2017) Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide. Mol Cell 67: 71-83 e77
Shih CJ, Chen HW, Hsieh HY, Lai YH, Chiu FY, Chen YR, Tu SL (2019) Heterogeneous nuclear ribonucleoprotein H1 coordinates with phytochrome and the U1 snRNP complex to regulate alternative splicing in Physcomitrella patens. Plant Cell 31: 2510-2524
Shikata H, Nakashima M, Matsuoka K, Matsushita T (2012) Deletion of the RS domain of RRC1 impairs phytochrome B signaling in Arabidopsis. Plant Signal Behav 7: 933-936
Sims RJ, 3rd, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D (2007) Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28: 665-676
Staiger D, Brown JW (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25: 3640-3656
Takei S, Togo-Ohno M, Suzuki Y, Kuroyanagi H (2016) Evolutionarily conserved autoregulation of alternative pre-mRNA splicing by ribosomal protein L10a. Nucleic Acids Res 44: 5585-5596
Ullah F, Hamilton M, Reddy ASN, Ben-Hur A (2018) Exploring the relationship between intron retention and chromatin accessibility in plants. BMC Genomics 19: 21
Wang YY, Xiong F, Ren QP, Wang XL (2020) Regulation of flowering transition by alternative splicing: the role of the U2 auxiliary factor. J Exp Bot 71: 751-758
Widiez T, Symeonidi A, Luo C, Lam E, Lawton M, Rensing SA (2014) The chromatin landscape of the moss Physcomitrella patens and its dynamics during development and drought stress. Plant J 79: 67-81
Wu HP, Su YS, Chen HC, Chen YR, Wu CC, Lin WD, Tu SL (2014) Genome-wide analysis of light-regulated alternative splicing mediated by photoreceptors in Physcomitrella patens. Genome Biol 15: R10
Wu S (2014) Gene expression regulation in photomorphogenesis from the perspective of the central dogma. Annu Rev Plant Biol 65: 311-333
Xin R, Zhu L, Salomé PA, Mancini E, Marshall CM, Harmon FG, Yanovsky MJ, Weigel D, Huq E (2017) SPF45-related splicing factor for phytochrome signaling promotes photomorphogenesis by regulating pre-mRNA splicing in Arabidopsis. Proc Natl Acad Sci U S A 114: E7018-E7027
Xu Y, Gan ES, Zhou J, Wee WY, Zhang X, Ito T (2014) Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res 42: 10960-10974
Young SK, Wek RC (2016) Upstream Open Reading Frames Differentially Regulate Gene-specific Translation in the Integrated Stress Response. J Biol Chem 291: 16927-16935
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72572-
dc.description.abstract我們以小立碗藓(Physcomitrella patens)為模式植物,研究植物在照到光之後所引發信使核糖核酸前驅物(pre-mRNA)選擇性剪接(alternative splicing, AS)的現象。選擇性剪接可將相同的信使核糖核酸前驅物剪接成不同的信使核糖核酸,此機制可以改變蛋白質組成來調控生長發育各階段的反應。實驗室先前的研究發現植物照到光之後發生頻率最高的選擇性剪接,是內插子保留(intron retention, IR)的現象,而且有很多內插子保留的調控發生在核糖體蛋白(ribosomal proteins)的信使核糖核酸前驅物上。由於過去曾有動物系統的文獻指出轉錄的過程中,信使核糖核酸選擇性剪接伴隨著組蛋白修飾(histone modification)同時進行。我參考動物系統的文獻並加以測試,以暸解植物中信使核糖核酸選擇性剪接的分子調控機制。我的研究發現,小立碗藓照光之後在受光調控而保留內插子的基因座上,組蛋白3第36號離氨酸被加上三個甲基 (H3K36me3)的機制受到調控;小立碗藓的MRG1 (MORF-Related Gene 1, PpMRG1) 蛋白會辨識H3K36me3並參與許多核糖體蛋白信使核糖核酸前驅物的剪接,選擇性保留信使核糖核酸前驅物的內插子。我們也嘗試找出MRG1對植物向光性的影響,發現PpMRG1的突變株對紅光誘導的向光性不敏感。這些結果結合動物系統的研究,我推測在紅光的處理後,H3K36me3的累積在個別基因座的變化,間接影響許多內插子保留現象發生在核糖體蛋白的信使核糖核酸前驅物上,可能使得最終核糖體蛋白結構改變,或使大小次單元的核糖體蛋白重組,而對特定現有的信使核糖核酸進行轉譯,使植物可以快速的對光線的變化作出反應。zh_TW
dc.description.abstractPlants perceive dynamic light conditions and optimize their growth and development accordingly by mainly regulating gene expression at multiple layers. Alternative splicing (AS), a widespread mechanism in eukaryotes that post-transcriptionally generates two or more mRNAs from the same pre-mRNA, is rapidly controlled by light. However, detailed mechanism of light-regulated AS is still not clear. In this study, I demonstrate that histone 3 lysine 36 trimethylation (H3K36me3) rapidly and differentially responds to light at specific gene loci with light-regulated intron retention (IR) of their transcripts in the moss Physcomitrella patens. However, the level of H3K36me3 following exposure to light is inversely related to that of IR events. P. patens MORF-Related Gene 1 (PpMRG1), a chromatin adaptor, bound with higher affinity to H3K36me3 in light conditions than in darkness and was differentially targeted to gene loci showing light-responsive IR. Transcriptome analysis indicated that PpMRG1 functions in light-mediated splicing regulation. We also found PpMRG1 associated with a hnRNP-K like splicing regulator to potentially control AS. Furthermore, PpMRG1 was also involved in red-light-mediated phototropic responses. my results suggest that light regulates histone methylation, which leads to alterations of AS patterns. The chromatin adaptor PpMRG1 potentially participates in light-mediated AS, revealing that chromatin-coupled regulation of pre-mRNA splicing is an important aspect of the plant’s response to environmental changes.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:01:08Z (GMT). No. of bitstreams: 1
U0001-1301202111321200.pdf: 10897404 bytes, checksum: 75523c3bfd9856dc5b50eaaa052b7e8d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents1. 中文摘要 1
2. Abstract 2
3. Introduction 3
4. Results 6
4.1. H3K36 is trimethylated in response to RL 6
4.2. IR events and H3K36me3 levels have opposite responses to RL 8
4.3. PpMRG1 differentially associates with H3K36me3 in response to RL 8
4.4. Loss of MRG1 affects RL-responsive IR 10
4.5. PpMRG1 positively regulates phototropic responses in P. patens 12
4.6. A FLK like protein interacts with PpMRG1 13
5. Discussion 14
6. Materials and Methods 18
6.1. Plant materials and growth conditions 18
6.2. Plasmid construction 18
6.3. CRISPR-cas9 mediated mutation 19
6.4. Transformation and generation of knockout and overexpression lines 20
6.5. RT-qPCR analysis 20
6.6. Chromatin immunoprecipitation (ChIP) 21
6.7. Immunoprecipitation 21
6.8. RNA-Seq and Data Analysis 22
6.9. Phototropism Assay 23
6.10. Yeast Two-Hybrid experiment 23
6.11. Accession numbers 24
7. Figures 25
Figure 1. H3K36 trimethylation responds to light. 25
Figure 2. Validation of H3K36me3 enrichment on additional genes by using ChIP-qPCR. 26
Figure 3. Validation of H3K36me3 enrichment on additional genes by using ChIP-qPCR. 27
Figure 4. Light-dependent changes in H3K36me3 enrichment and IR level have opposite patterns. 28
Figure 5. Association of PpMRG1 with histone lysine trimethylations. 29
Figure 6. MRG1 associates with H3K36me3 under light. 30
Figure 7. Validation of PpMRG1 enrichment on additional genes by using ChIP-qPCR. 31
Figure 8. PpMRG1 is involved in RL-regulated IR. 32
Figure 9. Validation of IR pattern in the WT and ppmrg1. 33
Figure 10. Validation of IR pattern in the WT and ppmrg1. 37
Figure 11. PpMRG1 is involved in regulating RL-mediated AltD/A, ES. 38
Figure 12. PpMRG1 functions in RL-dependent phototropic response. 39
Figure 13. Yeast two-hybrid assay to identify PpMRG1 interacting proteins. 40
Figure 14. Sequence alignment of FLKs. 41
Figure 15. Proposed model for chromatin-coupled regulation of AS. 42
Supplemental Figure S1. H3K36 trimethylation responds to light. 43
Supplemental Figure S2. Generation of c-Myc-PpMRG1 transgenic plants by homozygous recombination. 44
Supplemental Figure S3. RL-dependent association of PpMRG1 with H3K36me3. 45
Supplemental Figure S4. Generation of ppmrg1 knock mutant by homozygous recombination. 46
Supplemental Figure S5. Validation of H3K36me3 and PpMRG1 enrichment on additional genes by using ChIP-qPCR. 47
Supplemental Figure S6. Phototropism in the WT and ppmrg1. 49
8. Table 50
Supplemental Table S1. Read mapping statistics of RNA-seq data. 50
Supplemental Table S2. Functional enrichment of IR genes regulated by PpMRG1. 51
Supplemental Table S3. Distribution of bending angles in the WT and ppmrg1. 52
Supplemental Table S4. IDs and annotations of genes used in this study. 53
9. Literature Cited 54
dc.language.isoen
dc.subject選擇性剪接zh_TW
dc.subject小立碗藓zh_TW
dc.subject內插子保留zh_TW
dc.subjectMRG1蛋白zh_TW
dc.subject組蛋白修飾zh_TW
dc.subjectPhyscomitrella patensen
dc.subjectalternative splicingen
dc.subjectintron retentionen
dc.subjectMRG proteinen
dc.subjectH3K36me3en
dc.titlePpMRG1藉由辨識H3K36me3參與光調控mRNA選擇性剪接zh_TW
dc.titlePpMRG1 Recognizes H3K36me3 for the Regulation of Light-Responsive Alternative Splicing in Physcomitrella patensen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.coadvisor謝旭亮(Hsu-Liang Hsieh)
dc.contributor.oralexamcommittee吳素幸(Shu-Hsing Wu),陸重安(Chung-An Lu),陳柏仰(Pao-Yang Chen)
dc.subject.keyword小立碗藓,選擇性剪接,內插子保留,MRG1蛋白,組蛋白修飾,zh_TW
dc.subject.keywordPhyscomitrella patens,alternative splicing,intron retention,MRG protein,H3K36me3,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202100051
dc.rights.note有償授權
dc.date.accepted2021-01-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1301202111321200.pdf
  未授權公開取用
10.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved