請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72558完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 舒貽忠 | |
| dc.contributor.author | Shih-Wei Chen | en |
| dc.contributor.author | 陳士惟 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:00:53Z | - |
| dc.date.available | 2019-08-19 | |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-01 | |
| dc.identifier.citation | [1] Kamel, C. de Nooijer, M. Jambunathan, M. Goedbloed, D. Hohlfeld, S. Matova, V. Pop, L. Caballeor and R. van Schaijk. Vacuum-Packaged Piezoelectric Vibration Energy Harvesters: Damping Contribution and Autonomy for a Wireless Sensor System. Journal of Micromechanics and Microengineering, 20: 104001, 2010.
[2] S. Pirbhulal, H. Zhang, W. Wu, S. C. Mukhopadhyay and Y. T. Zhang. Heartbeats Based Biometric Random Binary Sequences Generation to Secure Wireless Body Sensor Networks. IEEE Transactions on Biomedical Engineering, 65:2751-2759, 2018. [3] M. Garbarino, M. Lai, D. Bender, R. W. Picard and S. Tognetti. Empatica E3 – A Wearable Wireless Multi-Sensor Device for Real-Time Computerized Biofeedback and Data Acquisition. 2014. [4] J. Polastre, R. Szewczyk and D. Culler. Enabling Ultra-Low Power Wireless Research. IEEE, 2005. [5] E. E. Aktakka and K. Najfi. A Micro Inertial Energy Harvesting Platform with Self-Supply Power Management Circuit for Autonomous Wireless Sensor. IEEE Journal of Solid-State Circuit, 49: 2017-2029, 2014. [6] Y. B. Jeon, R. Sood, J. H. Jeong and S. G. Kim. MEMS Power Generator with Transverse Mode Thin Film PZT. Sensors and Actuators A, 122:16-22, 2005. [7] L. G. W. Tvedt, D. S. Nguyen and E. Halvorsen. Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide and Narrowband Excitation. Journal of Microelectromechanical System, 19:305-316, 2010. [8] P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka and T. Bourouina. A Batch-Fabricated and Electret-Free Silicon Electrostatic Vibration Energy Harvester. Journal of Micromechanics and Microengineering, 19:115025, 2009. [9] Z. Li, L. Zuo, G. Luhrs, L. Lin and Y. X. Qin. Electromagnetic Energy Harvesting Shock Absorbers: Design, Modeling and Road Tests. IEEE Transcations on Vehicular Technology, 62:1065-1074, 2013. [10] W. Deng and Y. Wang. A Dual Resonant Rectilinear-to-Rotary Oscillation Converter for Low Frequency Broadband Electromagnetic Energy Harvesting. Smart Materials and Structures, 26:095059, 2017. [11] L. Zuo and X. Tang. Large-Scale Vibration Energy Harvesting. Journal of Intelligent Material Systems and Structures, 24:1405-1430, 2013. [12] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes and T. C. Green. Energy Harvesting from Human and Machine Motion for Wireless Electronic Devices. Proceedings of the IEEE, 96:1457-1486, 2008. [13] C. R. Bowen and M. H. Arafa. Energy Harvesting Technologies for Tire Pressure Monitoring Systems. Advanced Energy Materials, 5:1401787, 2015. [14] B. W. Drinkwater, J. Zhang, K. J. Kirk, J. Elgoyhen and R. S. Dwyer-Joyce. Ultrasonic Measurement of Rolling Bearing Lubrication Using Piezoelectric Thin Films. Journal of Tribology, 131:011502, 2009. [15] A. Erturk and D. J. Inman. Piezoelectric Energy Harvesting. Energy Conversion and Management, 50:1847-1850, 2009. [16] S. C. Lin and W. J. Wu. Piezoelectric Micro Energy Harvesters Based on Stainless-Steel Substrates. Smart Materials and Structures, 22:045016, 2013. [17] J. E. Kim. New Efficiency Measures of Energy Conversion and Their Characterization for Piezoelectric Vibration Energy Harvesters. Journal of Intelligent Material Systems and Structures, 28:2908-2919, 2017. [18] J. Ajitsaria, S. Y. Choe, D. Shen and D. J. Kim. Modeling anda Bimorph Piezoelectric Cantilever Beam for Voltage Generation. Smart Materials and Structures, 16:447-454, 2007. [19] H. P. Hu, Z. J. Cui and J. G. Cao. Performance of a Piezoelectric Bimorph Harvester with Variable Width. Journal of Mechanics, 23:197-202, 2007. [20] L. Mateu and F. Moll. Optimum Piezoelectric Bending Beam Structures for Energy Harvesting Using Shoe Inserts. Journal of Intelligent Material Systems and Structures, 16:835-845, 2005. [21] N. G. Elvin, A. A. Elvin and M. Spector. A Self-Powered Mechanical Strain Energy Sensor. Smart Materials and Structures, 10:293-299, 2001. [22] S. Roundy, P. K. Wright, and J. Rabaey. A Study of Low Level Vibration as Power Source for Wireless Sensor Nodes. Computer Communications, 26:1131-1144, 2003. [23] A. Erturk and D. J. Inman. A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters. Journal of Vibration and Acoustics, 130:041002-1, 2008. [24] A. Erturk and D. J. Inman. On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters. Journal of Intelligent Material Systems and Structures, 19:1311-1325, 2008. [25] A. Erturk and D. J. Inman. Issues in Mathematical Modeling of Piezoelectric Energy Harvesters. Smart Materials and Structures, 17:065016, 2008. [26] A. Erturk and D. J. Inman. An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting from Base Excitations. Smart Materials and Structures, 18:025009, 2009. [27] X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren and L. Lin. A Frequency Adjustable Vibration Energy Harvester. Proceedings of PowerMEMS and MicroEMS, 2008. [28] E. S. Leland and P. K. Wright. Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload. Smart Materials and Structures, 15:1413-1420, 2006. [29] M. Kim, M. Hoegen, J. Dugundji, and B. L. Wardle. Modeling and Experimental Verification of Proof Mass Effects on Vibration Energy Harvester Performance. Smart Materials and Structures, 19:045023, 2010. [30] H. Wang and Q. Meng. Analytical Modeling and Experimental Verification of Vibration Based Piezoelectric Bimorph Beam with a Tip Mass for Power Harvesting. Mechanical Systems and Signal Processing, 36:193-209, 2013. [31] D. Guyomar, A. Badel, E. Lefeuvre and C. Richard. Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 52:584-595, 2005. [32] E. Lefeuvre, A. Badel, C. Richard and D. Guyomar. Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction. Journal of Intelligent Material Systems and Structures, 16:865-876, 2005. [33] A. Badel, D. Guyomar, E. Lefeuvre and C. Richard. Piezoelectric Energy Harvesting Using a Synchronized Switch Technique. Journal of Intelligent Material Systems and Structures, 17:831-839, 2006. [34] Y. C. Shu and I. C. Lien. Analysis of Power Output for Piezoelectric Energy Harvesting Systems. Smart Materials and Structures, 15:1499-1512, 2006. [35] Y. C. Shu and I. C. Lien. Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System. Journal of Micromechanics and Microengineering, 16:2429-2438, 2006. [36] Y. C. Shu, I. C. Lien and W. J. Wu. An Improved Analysis of the SSHI Interface in Piezoelectric Energy Harvesting. Smart Materials and Structures, 16:2253-2264, 2007. [37] G. K. Ottman, H. F. Hofmann, A. C. Bhatt and G. A. Lesieutre. Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply. IEEE Transactions on Power Electronics, 17:669-676, 2002. [38] P. Pillatsch, E. M. Yeatman and A. S. Holmes. A Scalable Piezoelectric Impulse-Excited Energy Harvester for Human Body Excitation. Smart Materials and Structures, 21:115018, 2012. [39] D. Zhu and S. P. Beeby. A Coupled Bistable Structure for Broadband Vibration Energy Harvesting. IEEE, 978:446-449, 2013. [40] A. Bibo and M. F. Daqaq. Energy Harvesting under Combined Aerodynamic and Base Excitations. Journal of Sound and Vibration, 332:5086-5102, 2013. [41] H. X. Zou, W. M. Zhang, W. B. Li, Q. H. Gao, K. X. Wei, Z. K. Peng and G. Meng. Design, Modeling and Experimental Investigation of a Magnetically Coupled Flextensional Rotation Energy Harvester. Smart Material and Structures. 26:115023, 2017. [42] T. Xue and S. Roundy. On Magnetic Plucking Configurations for Frequency Up-Converting Mechanical Energy Harvesters. Sensors and Actuators A:Physical, 253:101-111, 2017. [43] H. Fu and E. M. Yeatman. A Methodology for Low-Speed Broadband Rotational Energy Harvesting Using Piezoelectric Transduction and Frequency Up-Conversion. Energy, 125:152-161, 2017. [44] Z. Chen, B. Guo, Y. Xiong, C. Cheng and Y. Yang. Melnikov-Method-Based Broadband Mechanism and Necessary Conditions of Nonlinear Rotating Energy Harvesting Using Piezoelectric Beam. Journal of Intelligent Material Systems and Structures, 27:2555-2567, 2016. [45] M. Guan and W. H. Liao. Design and Analysis of a Piezoelectric Energy Harvester for Rotational Motion System. Energy Conversion and Management, 111:239-244, 2016. [46] L. Gu and C. Livermore. Compact Passively Self-Tuning Energy Harvesting for Rotating Applications. Smart Materials and Structures, 21:015002, 2012. [47] P. Pillatsch, E. M. Yeatman and A. S. Holmes. A Piezoelectric Frequency Up-Converting Energy Harvester with Rotating Proof Mass for Human Body Applications. Sensors and Actuators A: Physical, 206:178-185, 2014. [48] Y. Yang, Q. Shen, J. Jin, Y. Wang, W. Qian and D. Yuan. Rotational Piezoelectric Wind Energy Harvesting Using Impact-Induced Resonance. Applied Physics Letters, 105:053901, 2014. [49] H. Fu and E. M. Yeatman. A Methodology for Low-Speed Broadband Rotational Energy Harvesting Using Piezoelectric Transduction and Frequency Up-Conversion. Energy, 125:152-161, 2017. [50] R. Ramezanpour, H. Nahvi and S. Z. Rad. Increasing the Performance of a Rotary Piezoelectric Frequency Up-Converting Energy Harvester under Weak Excitations. Journal of Vibration and Acoustics, 139:011016-1, 2017. [51] Y. C. Shu, W. C. Wang and Y. P. Pang. Electrically Rectified Piezoelectric Energy Harvesting Induced by Rotary Magnetic Plucking. Smart Materials and Structures, 27:125006, 2018. [52] L. Gu and C. Livermore. Passive Self-Tuning Energy Harvester for Extracting Energy from Rotational Motion. Applied Physics Letters, 97:081904, 2010. [53] Y. Zhang, R. Zheng, T. Kaizuka, D. Su, K. Nakano and M. P. Cartmell. Broadband Vibration Energy Harvesting by Application of Stochastic Resonance from Rotational Environments. The European Physical Journal Special Topics, 224:2687-2701, 2015. [54] W. C. Wang. Application of Rotating Periodic Magnetic Force to Piezoelectric Energy Harvesting. MS. Thesis. National Taiwan University, 2017. [55] Y. J. Chen. An Experimental Investigation of Mixed Type of Array of Piezoelectric Oscillators used for Energy Harvesting. MS. Thesis. National Taiwan University, 2017. [56] K. W. Yung, P. B. Landecker and D. D. Villani. An Analytic Solution for the Force Between Two Magnetic Dipoles. Magnetic and Electrical Separation, 9:39-52, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72558 | - |
| dc.description.abstract | 本文提出一種藉由磁力激振在旋轉環境下之壓電能量擷取裝置。此裝置適用於智能軸承健康監測傳感器的自主供電。該裝置由壓電懸臂樑組成,固定於滾珠軸承結構的外圈上並接上標準能量擷取電路。透過旋轉磁鐵沿徑向激振懸臂樑端點磁鐵,產生非接觸式磁力激振,壓電懸臂樑的振動能量得以擷取。基於磁力相互作用和傅立葉技術的分析,開發一個理論框架,從提出的理論中得到一些觀察結果。首先,磁鐵距離與旋轉半徑的比率較小可使壓電懸臂樑產生更穩定的頻率響應;其次,選擇較高共振頻率的壓電振動子可以產生更密集的頻率響應;第三,選擇較大機械阻尼的壓電振子可以實現減少頻率響應的波紋,隨後透過實驗證實這些觀察結果。最後,研究滾珠軸承結構外圈隨機振動引起的干擾效應,發現會使頻率響應的波紋以及功率顯著降低。 | zh_TW |
| dc.description.abstract | The thesis proposes a piezoelectric device capable of harvesting energy form rotary magnetic plucking dynamics. It is intended for self-powering sensors used in the health monitoring of smart bearings. The device consists of a piezoelectric cantilever beam fixed on the outer ring of a ball-bearing structure and attached to the standard energy harvesting circuit. A tip magnet is excited along the radial direction by a rotating magnet. Energy is therefore harvested by vibration due to non-contact magnetic plucking. A theoretical framework is developed based on the analysis of magnetic interaction and the use of the Fourier technique. There are several observations drawn from the proposed theory. First, the smaller ratio of magnetic distance to the radius revolution gives the more stable rotary frequency response. Second, the choice of high resonance of a piezoelectric oscillator gives dense rotary frequency response. Third, the reduction of ripples in rotary frequency response can be achieved by requiring larger mechanical damping. These observations are subsequently confirmed by experiment. Finally, the effect of the noise induced by the random vibration of the outer ring of a ball-bearing structure is studied. It is found that the ripples in the rotary frequency response are reduced at the significant cost of harvested power. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:00:53Z (GMT). No. of bitstreams: 1 ntu-108-R05543085-1.pdf: 70048109 bytes, checksum: 22461312e20efb844f3d6c2271ca2b3d (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 viii Chapter 1 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文架構 8 Chapter 2 壓電懸臂樑模型 9 2.1 壓電效應 9 2.2 線彈性壓電材料之本構方程式 10 2.3 壓電懸臂樑振子之數學模型 13 2.3.1 上下層壓電材料極化方向相反之壓電懸臂樑(雙層串聯組態) 15 Chapter 3 週期性磁力之數學模型 19 3.1 磁位能 19 3.2 週期性磁力 21 3.3 磁力之分析 22 3.4 磁力之傅立葉級數展開 26 Chapter 4 週期性磁力激振壓電能量擷取系統理論 30 4.1 交流分析 30 4.2 標準介面電路之分析 34 Chapter 5 磁力激振壓電振動能量擷取系統設計分析 37 5.1 磁力 37 5.2 壓電振子 40 5.2.1 短路共振頻率 40 5.2.2 無因次化力電耦合係數 42 5.2.3 無因次化機械阻尼係數 44 5.3 總結 46 Chapter 6 實驗驗證 48 6.1 實驗架設 48 6.1.1 磁鐵強度指標 48 6.1.2 旋轉式徑向磁力激振壓電振子 49 6.1.3 馬達軸旋轉產生之振動對壓電振子之影響 50 6.2 實驗流程 51 6.2.1 磁鐵強度指標 51 6.2.2 旋轉式徑向磁力激振壓電振子 51 6.2.3 馬達軸旋轉產生之振動對壓電振子之影響 52 6.3 實驗結果與討論 53 6.3.1 磁鐵強度指標 53 6.3.2 旋轉式徑向磁力激振壓電振子 56 6.3.3 環境振動干擾對壓電能量擷取系統之影響 73 Chapter 7 結論與未來展望 80 7.1 結論 80 7.2 未來展望 83 參考文獻 85 附錄A 92 附錄B 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 旋轉式壓電振能擷取 | zh_TW |
| dc.subject | 磁力激振 | zh_TW |
| dc.subject | 升頻轉換 | zh_TW |
| dc.subject | 旋轉機械振動干擾 | zh_TW |
| dc.subject | 傅立葉 | zh_TW |
| dc.subject | 脈衝 | zh_TW |
| dc.subject | Impulse | en |
| dc.subject | Rotary Piezoelectric Energy Harvesting | en |
| dc.subject | Rotary Mechanic Vibration Interference | en |
| dc.subject | Fourier | en |
| dc.subject | Frequency Up-Conversion | en |
| dc.subject | Magnetic Plucking | en |
| dc.title | 旋轉式徑向磁力於壓電振能擷取之研究 | zh_TW |
| dc.title | Study of Radial Direction of Rotating Magnetic Impulse for Piezoelectric Energy Harvesting | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林哲宇,陳志鴻 | |
| dc.subject.keyword | 旋轉式壓電振能擷取,磁力激振,脈衝,升頻轉換,傅立葉,旋轉機械振動干擾, | zh_TW |
| dc.subject.keyword | Rotary Piezoelectric Energy Harvesting,Magnetic Plucking,Impulse,Frequency Up-Conversion,Fourier,Rotary Mechanic Vibration Interference, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU201900810 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 68.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
