Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7254
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇慧敏(Hui-Min Su)
dc.contributor.authorGuan-Ju Chenen
dc.contributor.author陳冠竹zh_TW
dc.date.accessioned2021-05-19T17:40:39Z-
dc.date.available2029-07-31
dc.date.available2021-05-19T17:40:39Z-
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citationAlves-Bezerra M, Klett EL, De Paula IF, Ramos IB, Coleman RA, Gondim KC (2016) Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus. Biochim Biophys Acta 1861:650-662.
Calderon F, Kim HY (2004) Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem 90:979-988.
Cao J, Shan D, Revett T, Li D, Wu L, Liu W, Tobin JF, Gimeno RE (2008) Molecular identification of a novel mammalian brain isoform of acyl-CoA:lysophospholipid acyltransferase with prominent ethanolamine lysophospholipid acylating activity, LPEAT2. J Biol Chem 283:19049-19057.
Chalil A, Kitson AP, Aristizabal Henao JJ, Marks KA, Elzinga JL, Lamontagne-Kam DME, Chalil D, Badoud F, Mutch DM, Stark KD (2018) PEMT, Delta6 desaturase, and palmitoyldocosahexaenoyl phosphatidylcholine are increased in rats during pregnancy. J Lipid Res 59:123-136.
Coe NR, Bernlohr DA (1998) Physiological properties and functions of intracellular fatty acid-binding proteins. Biochimica et Biophysica Acta -Lipids Lipid Metabolism 1391:287-306.
Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79-83.
Doege H, Stahl A (2006) Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology 21:259-268.
Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q, Punreddy S, Hirsch D, Watson N, Gimeno RE, Stahl A (2006) Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130:1245-1258.
Eto M, Shindou H, Shimizu T (2014) A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids. Biochem Biophys Res Commun 443:718-724.
Falcon A, Doege H, Fluitt A, Tsang B, Watson N, Kay MA, Stahl A (2010) FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am J Physiol Endocrinol Metab 299:E384-393.
Fernandez RF, Kim SQ, Zhao Y, Foguth RM, Weera MM, Counihan JL, Nomura DK, Chester JA, Cannon JR, Ellis JM (2018) Acyl-CoA synthetase 6 enriches the neuroprotective omega-3 fatty acid DHA in the brain. Proc Natl Acad Sci U S A 115:12525-12530.
Fujino T, Kang M-J, Suzuki H, Iijima H, Yamamoto T (1996) Molecular characterization and expression of rat acyl-CoA synthetase 3. Journal of Biological Chemistry 271:16748-16752.
Fujita M, Fujii H, Kanda T, Sato E, Hatakeyama K, Ono T (1995) Molecular cloning, expression, and characterization of a human intestinal 15‐kDa protein. European journal of biochemistry 233:406-413.
Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7:489-503.
Furuhashi M, Saitoh S, Shimamoto K, Miura T (2014) Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin Med Insights Cardiol 8:23-33.
Gerbi A, Maixent JM, Barbey O, Jamme I, Pierlovisi M, Coste T, Pieroni G, Nouvelot A, Vague P, Raccah D (1998) Alterations of Na, K‐ATPase isoenzymes in the rat diabetic neuropathy: protective effect of dietary supplementation with n‐3 fatty acids. J Neurochem 71:732-740.
Gimeno RE (2007) Fatty acid transport proteins. Current opinion in lipidology 18:271-276.
Green P, Yavin E (1993) Elongation, desaturation, and esterification of essential fatty acids by fetal rat brain in vivo. J Lipid Res 34:2099-2107.
Green P, Glozman S, Kamensky B, Yavin E (1999) Developmental changes in rat brain membrane lipids and fatty acids: the preferential prenatal accumulation of docosahexaenoic acid. J Lipid Res 40:960-966.
Hall AM, Wiczer BM, Herrmann T, Stremmel W, Bernlohr DA (2005) Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem 280:11948-11954.
Iizuka-Hishikawa Y, Hishikawa D, Sasaki J, Takubo K, Goto M, Nagata K, Nakanishi H, Shindou H, Okamura T, Ito C, Toshimori K, Sasaki T, Shimizu T (2017) Lysophosphatidic acid acyltransferase 3 tunes the membrane status of germ cells by incorporating docosahexaenoic acid during spermatogenesis. J Biol Chem 292:12065-12076.
Kang M-J, Fujino T, Sasano H, Minekura H, Yabuki N, Nagura H, Iijima H, Yamamoto TT (1997) A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proceedings of the National Academy of Sciences 94:2880-2884.
Kim JH, Lewin TM, Coleman RA (2001) Expression and characterization of recombinant rat Acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones. J Biol Chem 276:24667-24673.
Lauritzen L (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. J Prog Lipid Res 40:1-94.
Li LO, Mashek DG, An J, Doughman SD, Newgard CB, Coleman RA (2006) Overexpression of rat long chain acyl-coa synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. J Biol Chem 281:37246-37255.
Lobo S, Wiczer BM, Bernlohr DA (2009) Functional analysis of long-chain acyl-CoA synthetase 1 in 3T3-L1 adipocytes. J Biol Chem 284:18347-18356.
Lu B, Jiang YJ, Man MQ, Brown B, Elias PM, Feingold KR (2005) Expression and regulation of 1-acyl-sn-glycerol- 3-phosphate acyltransferases in the epidermis. J Lipid Res 46:2448-2457.
Marszalek JR, Lodish HF (2005) Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol 21:633-657.
Marszalek JR, Kitidis C, Dirusso CC, Lodish HF (2005) Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J Biol Chem 280:10817-10826.
Mashek DG, Li LO, Coleman RA (2006a) Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. J Lipid Res 47:2004-2010.
Mashek DG, McKenzie MA, Van Horn CG, Coleman RA (2006b) Rat long chain acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle-RH7777 cells. J Biol Chem 281:945-950.
Mashek DG, Bornfeldt KE, Coleman RA, Berger J, Bernlohr DA, Black P, DiRusso CC, Farber SA, Guo W, Hashimoto N, Khodiyar V, Kuypers FA, Maltais LJ, Nebert DW, Renieri A, Schaffer JE, Stahl A, Watkins PA, Vasiliou V, Yamamoto TT (2004) Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. J Lipid Res 45:1958-1961.
Meller N, Morgan ME, Wong WP, Altemus JB, Sehayek E (2013) Targeting of Acyl-CoA synthetase 5 decreases jejunal fatty acid activation with no effect on dietary long-chain fatty acid absorption. Lipids in health 12:88.
Mitchell RW, Hatch GM (2011) Fatty acid transport into the brain: of fatty acid fables and lipid tails. Prostaglandins Leukot Essent Fatty Acids 85:293-302.
Moriguchi T, Salem Jr N (2003) Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J Neurochem 87:297-309.
Moriguchi T, Greiner RS, Salem Jr N (2000) Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem 75:2563-2573.
Murphy EJ, Owada Y, Kitanaka N, Kondo H, Glatz JF (2005) Brain arachidonic acid incorporation is decreased in heart fatty acid binding protein gene-ablated mice. Biochemistry 44:6350-6360.
Ochiai Y, Uchida Y, Ohtsuki S, Tachikawa M, Aizawa S, Terasaki T (2017) The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport. J Neurochem 141:400-412.
Oko R, Morales CR (1994) A novel testicular protein, with sequence similarities to a family of lipid binding proteins, is a major component of the rat sperm perinuclear theca. Developmental biology 166:235-245.
Owada Y, Abdelwahab SA, Kitanaka N, Sakagami H, Takano H, Sugitani Y, Sugawara M, Kawashima H, Kiso Y, Mobarakeh JI, Yanai K, Kaneko K, Sasaki H, Kato H, Saino-Saito S, Matsumoto N, Akaike N, Noda T, Kondo H (2006) Altered emotional behavioral responses in mice lacking brain-type fatty acid-binding protein gene. Eur J Neurosci 24:175-187.
Pan Y, Short JL, Choy KH, Zeng AX, Marriott PJ, Owada Y, Scanlon MJ, Porter CJ, Nicolazzo JA (2016) Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier Regulates Endogenous Brain Docosahexaenoic Acid Levels and Cognitive Function. J Neurosci 36:11755-11767.
Pei Z, Fraisl P, Berger J, Jia Z, Forss-Petter S, Watkins PA (2004) Mouse very long-chain Acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells. J Biol Chem 279:54454-54462.
Rapoport SI, Chang MC, Spector AA (2001) Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. Journal of lipid research 42:678-685.
Söderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421.
Scott BL, Bazan NG (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. J Proceedings of the National Academy of Sciences 86:2903-2907.
Selvaraj V, Asano A, Page JL, Nelson JL, Kothapalli KS, Foster JA, Brenna JT, Weiss RS, Travis AJ (2010) Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev Biol 348:177-189.
Shindou H, Koso H, Sasaki J, Nakanishi H, Sagara H, Nakagawa KM, Takahashi Y, Hishikawa D, Iizuka-Hishikawa Y, Tokumasu F, Noguchi H, Watanabe S, Sasaki T, Shimizu T (2017) Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor cells. J Biol Chem 292:12054-12064.
Storch J, Thumser AE (2010) Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem 285:32679-32683.
Su H-M, Huang M-C, Saad NM, Nathanielsz PW, Brenna JT (2001a) Fetal baboons convert 18: 3n-3 to 22: 6n-3 in vivo: a stable isotope tracer study. J Lipid Res 42:581-586.
Su HM (2010) Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 21:364-373.
Su HM, Moser AB, Moser HW, Watkins PA (2001b) Peroxisomal straight-chain Acyl-CoA oxidase and D-bifunctional protein are essential for the retroconversion step in docosahexaenoic acid synthesis. J Biol Chem 276:38115-38120.
Tomoda H, Igarashi K, Cyong J-C, Omura SJJoBC (1991) Evidence for an essential role of long chain acyl-CoA synthetase in animal cell proliferation. Inhibition of long chain acyl-CoA synthetase by triacsins caused inhibition of Raji cell proliferation. 266:4214-4219.
Trapp BD, Dubois‐Dalcq M, Quarles RH (1984) Ultrastructural localization of P2 protein in actively myelinating rat Schwann cells. Journal of neurochemistry 43:944-948.
Vassileva G, HUWYLER L, POIRIER K, AGELLON LB, TOTH MJ (2000) The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. The FASEB Journal 14:2040-2046.
Vergnes L, Beigneux AP, Davis R, Watkins SM, Young SG, Reue K (2006) Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity. J Lipid Res 47:745-754.
Wu H, Ichikawa S, Tani C, Zhu B, Tada M, Shimoishi Y, Murata Y, Nakamura YJBeBA-M, Lipids CBo (2009) Docosahexaenoic acid induces ERK1/2 activation and neuritogenesis via intracellular reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Biochim Biophys Acta 1791:8-16.
Xu LZ, Sánchez R, Sali A, Heintz N (1996) Ligand specificity of brain lipid-binding protein. Journal of Biological Chemistry 271:24711-24719.
Yamashita A, Hayashi Y, Nemoto-Sasaki Y, Ito M, Oka S, Tanikawa T, Waku K, Sugiura T (2014) Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 53:18-81.
蔡惠如 (2018) 探討大鼠腦部發育老化過程對突觸可塑性基因、參與DHA合成及嵌入細胞膜磷脂質酵素表現之影響. In: 生理學研究所, p 91. 台北市: 國立臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7254-
dc.description.abstract二十二碳六烯酸(Docosahexaenoic acid, DHA, 22:6n-3)富含在大腦細胞膜磷脂質之中,可維持神經細胞之正常結構及功能。DHA主要在大腦發育時期快速堆積在腦部,成年後則維持穩定的含量。DHA透過前驅物α-次亞麻油酸(α-linolenic acid, ALA, 18:3n-3)在肝臟中透過去飽和(Desaturation)及加長碳鏈(Elongation)合成,經由Fatty acids-transport proteins(FATPs)及Fatty acid-binding proteins(FABPs)協助體循環中DHA進入大腦,透過Long-chain fatty acid acyl-CoA synthetase (ACSLs)活化形成DHA-CoA,最後經由Acyltransferase嵌入細胞膜磷脂質之中。本論文欲探討為何DHA主要富含在大腦,且為何DHA主要在大腦發育時期堆積在大腦中。
本論文第一部分利用母鼠懷孕第一天給予corn oil-based 或sunflower oil-based n-3脂肪酸缺乏飲食,或n-3脂肪酸缺乏飲食給予每日管餵魚油做為n-3脂肪酸充足飲食,子代離乳後持續給予該飲食至犧牲。取出生子代出生0.5、7、14、21、28、90、210及360天之大腦皮質及肝臟。探討在大腦發育期至成年過程與攝取n-3脂肪酸缺乏飲食,是否會影響大腦皮質及肝臟之中DHA含量、參與DHA合成及嵌入細胞磷脂膜之相關蛋白及酵素之基因表現。以氣相層析儀分析脂肪酸組成,即時聚合酶連鎖反應分析mRNA表現量。
本論文第一部分發現大腦皮質之DHA含量在大腦發育時期逐漸增加,成年之後DHA含量維持穩定,肝臟DHA含量在發育至成年過程無變化,且肝臟DHA含量約為大腦皮質的50 %。大腦皮質中參與DHA合成酵素FADS2、Elovl5、FADS1及Elovl2 mRNA表現量在大腦發育初期表現量較高,且此時大腦皮質與肝臟的表現量相當;成年後大腦皮質FADS2、Elovl5、FADS1及Elovl2 mRNA表現量下降,而肝臟表現量則隨年齡增加而上升,並顯著高於大腦皮質。大腦皮質中,協助DHA運輸至大腦的蛋白質FABP7及FABP5 mRNA表現量在大腦發育初期表現量較高,出生14天至成年後逐漸下降,成年後表現量皆很低。而大腦皮質中參與DHA嵌入相關酵素ACSL3、ACSL6、LPEAT2及AGPAT4 mRNA表現量在大腦發育時期逐漸增至出生21天,並且顯著高於肝臟。在大腦發育及成年過程,n-3脂肪酸缺乏飲食不影響這些酵素及蛋白質的表現。本論文第二部分利用shRNA分別抑制人類細胞株SH-SY5Y及HEK293T細胞中LPEAT2、ACSL3、ACSL6或FABP5表現量,探討抑制參與DHA嵌入細胞膜磷脂質相關酵素或蛋白質之表現,是否會影響細胞對DHA嵌入能力。本論文第二部分發現無論是在SH-SY5Y或HEK293T細胞中,抑制LPEAT2、ACSL3、ACSL6或FABP5表現,皆不影響細胞對DHA嵌入能力。
本論文推論,大腦在大腦發育期有較高FADS2、Elovl5、FADS1及Elovl2 mRNA表現量,協助大腦自行合成部分DHA,而大腦在大腦發育期亦有較高的FABP7及FABP5 mRNA表現量,協助體循環中的DHA進入大腦,故DHA在大腦發育期快速堆積在大腦中。而大腦皮質中ACSL3、ACSL6、LPEAT2及AGPAT4 mRNA表現量顯著高於肝臟,協助大腦中DHA嵌入細胞膜磷脂質,故DHA主要富含在大腦而非肝臟中。且大腦皮質ACSL3、ACSL6、LPEAT2及AGPAT4 mRNA表現量隨大腦發育逐漸增加,成年後維持高量表現,協助成年後大腦DHA含量維持plateau。
zh_TW
dc.description.abstractDocosahexaenoic acid (DHA, 22:6n-3) is mainly enriched in the brain and is primary anchored into neuronal membrane phospholipids for normal neurological function. Most DHA accumulation in brain takes place during brain development and DHA is biosynthesized from its precursor, -linolenic acid (18:3n-3) via desaturases and elongases following by converted to DHA-Co-A by long-chain acyl-CoA synthetase (ACSLs) and then incorporated into phospholipids by Lyso-phosphatidate acyltransferase (LPAATs). The aim of this thesis was to examine the effect of age and n-3 fatty acid-deficient diet on the enzyme involved in DHA biosynthesis and incorporation into membrane phospholipids during brain development, in adult rats and human cell lines.
Rats exposed to a sunflower oil-based n-3 fatty acid-deficient diet or sunflower oil mixed with fish oil as an n-3 fatty acid-adequate diet from in utero via maternal intake. After weaning, pups were maintained on the same diet as their dams till sacrificed at age of 0.5, 7, 14, 21, 28, 90, 210 and 360 days old. The fatty acid composition and mRNA expression in cortex and liver were analyzed by GC and RT-qPCR, respectively.
The enzymes involved in DHA biosynthesis, FADS2, FADS1, ELOVL5 and ELOVL2 mRNA expression were no difference between cortex and liver during brain development up to age of 7-14 days old, then they were increased in liver but not in cortex up to 28 days old and then plateau. The DHA levels and mRNA expression of ACSL3, ACSL6, LPEAT2, and AGPAT4 in brain were increased but remained constant in liver during brain development. The mRAN expression of FADS2, ELOVL5, FADS1, DBP, SCPx, FATP1, FATP5, FABP1, FABP3, ACSL1, ACSL4, and ACSL5 in liver were increased during brain development up to age of 28 days old and then plateau up to examined age of 360 days old. The mRNA expression of FABP5 were high at newborn and FABP7 in liver were increased during brain development up to age of 14 days old following decreased and remain constant low at adult 90-360 days old. No main effect of n-3 fatty acid deficient diet on above enzymes mRNA expression during developing and in adult liver. The knockdown expression of LPEAT2, ACSL3, ACSL6 and FABP5 in SH-SY5Y or HEK293T cells had no effect on DHA incorporation into cells.
It was concluded that the brain DHA levels were accumulated rapidly during brain development. The expressing of the enzyme involved in DHA biosynthesis in brain and the fatty acid binding protein 5 and 7 was high at new born, suggesting they may plan important roles for DHA accumulation during brain development.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:39Z (GMT). No. of bitstreams: 1
ntu-108-R05441003-1.pdf: 7993745 bytes, checksum: 2d1ff037d98be2a9321c8d770db16cfb (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
中文摘要 I
Abstract III
目錄 V
圖表錄 VII
第一章、文獻回顧 1
一、二十二碳六烯酸簡介 1
二、參與DHA合成及嵌入細胞膜磷脂質相關酵素及蛋白質 2
2.1.參與DHA合成酵素 2
2.2.參與DHA嵌入細胞膜磷脂質相關酵素及蛋白質 2
三、磷脂質種類及合成途徑 8
3.1.de novo synthesis of phospholipids (Kennedy pathway) 9
3.2.fatty acids remodeling of phospholipids (Land’s cycle) 9
第二章、研究目的與實驗設計 10
一、探討大腦發育至成年過程與n-3脂肪酸缺乏,對大腦皮質及肝臟中DHA含量、參與DHA合成及嵌入細胞膜磷脂質PE相關酵素和蛋白質的基因表現的影響 10
1. 研究目的 10
2. 實驗設計 10
二、探討抑制參與DHA嵌入細胞膜磷脂質PE重要酵素或蛋白質,對人類細胞株中DHA嵌入能力的影響 11
1. 研究目的 11
2. 實驗設計 11
第三章、材料與方法 12
一、實驗動物、飼養條件與實驗飼料 12
二、細胞培養及轉染 13
三、以氣相層析儀分析脂肪酸組成 17
四、以即時聚合酶連鎖反應分析基因表現量 19
五、以西方墨點法分析蛋白質表現量 23
六、數據統計分析 28
第四章、實驗結果 29
第一部分 29
一、餵食Chow diet之大鼠在大腦發育至成年過程中,腦部重量、大腦DHA含量及重量之變化 29
二、大腦發育至成年過程及n-3缺乏飼料對大鼠大腦皮質及肝臟中,DHA、DPA及AA含量及重量之比較 29
三、大腦發育至成年過程及n-3缺乏飼料對大鼠大腦皮質及肝臟中,參與DHA合成及DHA嵌入細胞膜磷脂質相關基因表現量的影響 32
第二部分 43
一、比較SH-SY5Y、HEK293T、HepG2及MCF-7細胞株中,參與DHA合成及嵌入細胞膜磷脂質相關酵素之基因表現 43
二、在SH-SY5Y及HEK293T細胞對DHA嵌入能力 45
三、在SH-SY5Y細胞中以shRNA抑制對DHA嵌入細胞膜磷脂質重要酵素表現對DHA嵌入能力之影響 45
四、在HEK293T細胞中以shRNA抑制對DHA嵌入細胞膜磷脂質重要酵素表現對DHA嵌入能力之影響 47
第五章、討論 51
第一部分 51
一、大腦發育期大腦DHA含量、參與DHA合成及嵌入細胞膜磷脂質相關酵素和蛋白質的基因表現探討——為何DHA在大腦發育時期快速堆積 52
二、成年過程對大腦和肝臟DHA含量、參與DHA合成及嵌入細胞膜磷脂質相關酵素和蛋白質的基因表現探討——成年後大腦DHA不再增加 53
三、大腦及肝臟DHA含量差異及參與DHA嵌入細胞膜磷脂質相關酵素和蛋白質的基因表現差異探討——DHA主要富含在大腦,且成年後大腦DHA維持plateau 55
四、n-3脂肪酸缺乏,對大腦及肝臟中DHA含量、參與DHA合成及嵌入細胞膜磷脂質相關酵素和蛋白質的基因表現 57
第二部分 59
一、篩選成功轉染shRNA至人類SH-SY5Y或HEK293T細胞株 59
二、抑制SH-SY5T或HEK293T細胞的LPEAT2、ACSL3、ACSL6或FABP5表現,對DHA嵌入能力的影響 59
第六章、結論 63
表(Table) 64
圖 (Figure) 70
附錄(Appendix) 102
參考文獻 115
圖表錄
Table 1. primer list (for rats RT-qPCR) 64
Table 2. primer list (for human cell lines RT-qPCR) 66
Table 3. shRNA list 69
Figure 1. The pathway of DHA biosynthesis 70
Figure 2. The fatty acid transport protein, fatty acid binding protein and enzymes involved in DHA incorporation into membrane phospholipids. 71
Figure 3. The brain weight, DHA levels shown as the % of total fatty acids and DHA weight as mg/g cortex in fetus at embryo 14 days and embryo 18 days as well as in pups at age of 0.5, 7, 14, 21, 28, 90 and 210 days old in rats fed normal chow diets. 72
Figure 4. The brain and liver DHA levels shown as the % of total fatty acids and weight as mg/g tissue at age of 0.5, 7, 14, 21, 28, 90, 210 and 360 days old in rats fed n-3 fatty acid-adequate or deficient diets. 73
Figure 5. The brain and liver DPA levels shown as the % of total fatty acids and weight as mg/g tissue at age of 0.5, 7, 14, 21, 28, 90, 210 and 360 days old in rats fed n-3 fatty acid-adequate or deficient diets. 74
Figure 6. The brain and liver AA levels shown as the % of total fatty acids and weight as mg/g tissue at age of 0.5, 7, 14, 21, 28, 90, 210 and 360 days old in rats fed n-3 fatty acid-adequate or deficient diets. 75
Figure 7. The enzymes involved in DHA biosynthesis, Fads2, Elovl5 , Fads1 and Elovl2 mRNA expression, in cortex and liver at age of 0.5, 7, 14, 21, 28, 210 and 360 days old in rat fed an n-3 adequate or deficient diet. 77
Figure 8.The enzymes involved in peroxisomal -oxidation for DHA biosynthesis, Acox1 , hsd17b4 , Acaa1 and Scp2 mRNA expression, in cortex and liver at age of 0.5, 7, 14, 21, 28, 210 and 360 days old in rat fed an n-3 adequate or deficient diet. 79
Figure 9. The fatty acid transporter protein, FATP1, FATP4 , FATP2 and FATP5 mRNA expression, in liver at age of 0.5, 7, 14, 21, 28, 90, 210 and 360 days old in rat fed an n-3 adequate or deficient diet. 80
Figure 10. The fatty acid binding protein, FABP7, FABP5 , FABP3 and FABP1 mRNA expression, in liver at age of 0.5, 7, 14, 21, 28, 90, 210 and 360 days old in rat fed an n-3 adequate or deficient diet. 81
Figure 11. The acyl-co synthetases, Acsl6, Acsl3, Acsl1,Acsl4 and Acsl5 mRNA expression, in cortex and liver at age of 0.5, 7, 14, 21, 28, 90, 210 and 360 days old in rat fed an n-3 adequate or deficient diet. 83
Figure 12. The Lpcat4, Agpat4 and Agpat5 mRNA expression in cortex and liver at age of 0.5, 7, 14, 21, 28, 90, 210, 360 and 540 days old in rat fed an n-3 fatty acid-adequate or deficient diet. 85
Figure 13. The enzymes involved in DHA biosynthesis, Fads2, Elovl5, Fads1 and Elovl2 mRNA expression, in SH-SY5Y, HEK293T, HepG2, and MCF-7.. 86
Figure 14. The enzymes involved in peroxisomal -oxidation for DHA biosynthesis, Acox1, hsd17b4, Acaa1 and Scp2 mRNA expression, in SH-SY5Y, HEK293T, HepG2, and MCF-7. 87
Figure 15. The fatty acid transporter protein, SCL27A1, SCL27A4, SCL27A2 and SCL27A5 mRNA expression, in SH-SY5Y, HEK293T, HepG2, and MCF-7. 88
Figure 16. The fatty acid binding protein, FABP7, FABP5, FABP3 and FABP1 mRNA expression, in SH-SY5Y, HEK293T, HepG2, and MCF-7. 89
Figure 17. The acyl-CoA synthetase, ACSL6, ACSL3, ACSL1, ACSL4 and ACSL5 mRNA expression, in SH-SY5Y, HEK293T, HepG2, and MCF-7.. 90
Figure 18. The LPCAT4 and AGPAT4 mRNA expression, in SH-SY5Y, HEK293T, HepG2, and MCF-7. 91
Figure 19. The DHA incorporation into SH-SY5Y and HEK293T cells.. 92
Figure 20. LPEAT2 knockdown in SH-SY5Y cells. 93
Figure 21. ACSL6 knockdown in SH-SY5Y cells. 94
Figure 22. FABP5 knockdown in SH-SY5Y cells. 95
Figure 23. LPEAT2 knockdown in HEK293T cells. 96
Figure 24. ACSL3 knockdown in HEK293T cells. 97
Figure 25. ACSL6 knockdown in HEK293T cells. 98
Figure 26. FABP5 knockdown in HEK293T cells. 99
Figure 27. 論文結論示意圖(developing rats) 100
Figure 28. 論文結論示意圖(adult rats) 101
dc.language.isozh-TW
dc.title探討大鼠發育過程及人類細胞株中參與二十二碳六烯酸合成及嵌入細胞膜磷脂質酵素基因表現zh_TW
dc.titleThe gene expression of enzymes involved in docosahexaenoic acid biosynthesis and incorporation into membrane phospholipids in developing rats and human cell linesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃青真(Ching-Jang Huang),呂紹俊(Shao-Chun Lu),張美鈴(Mei-Ling Chang)
dc.subject.keyword二十二碳六烯酸,醯基轉移?,磷脂質,大腦發育,神經元,zh_TW
dc.subject.keywordDHA,acyltransferase,Phospholipids,Developing brain,Neuron,en
dc.relation.page119
dc.identifier.doi10.6342/NTU201902319
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
dc.date.embargo-lift2029-07-31-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  此日期後於網路公開 2029-07-31
7.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved