請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72547完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳和麟(Ho-Lin Chen) | |
| dc.contributor.author | Dian-Lun Lin | en |
| dc.contributor.author | 林殿倫 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:00:41Z | - |
| dc.date.available | 2019-08-06 | |
| dc.date.copyright | 2019-08-06 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-01 | |
| dc.identifier.citation | [1] S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On nash equilibria for a network creation game. In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 89–98. Society for Industrial and Applied Mathematics, 2006.
[2] V.BalaandS.Goyal.Anoncooperativemodelofnetworkformation.Econometrica, 68(5):1181–1229, 2000. [3] N. Baumann and S. Stiller. The price of anarchy of a network creation game with exponential payoff. In International Symposium on Algorithmic Game Theory, pages 218–229. Springer, 2008. [4] D. Bilò and P. Lenzner. On the tree conjecture for the network creation game. arXiv preprint arXiv:1710.01782, 2017. [5] E. D. Demaine, M. Hajiaghayi, H. Mahini, and M. Zadimoghaddam. The price of anarchy in network creation games. ACM Transactions on Algorithms (TALG), 8(2):13, 2012. [6] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On a network creation game. In Proceedings of the twenty-second annual symposium on Principles of distributed computing, pages 347–351. ACM, 2003. [7] A. Galeotti, S. Goyal, and J. Kamphorst. Network formation with heterogeneous players. Games and Economic Behavior, 54(2):353–372, 2006. [8] A. J. Hoffman and R. R. Singleton. On moore graphs with diameters 2 and 3. In Selected Papers Of Alan J Hoffman: With Commentary, pages 377–384. World Sci- entific, 2003. [9] B. Kawald and P. Lenzner. On dynamics in selfish network creation. In Proceed- ings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures, pages 83–92. ACM, 2013. [10] A. Mamageishvili, M. Mihalák, and D. Müller. Tree nash equilibria in the network creation game. Internet Mathematics, 11(4-5):472–486, 2015. [11] M. McBride. Imperfect monitoring in communication networks. Journal of Eco- nomic Theory, 126(1):97–119, 2006. [12] M. Mihalák and J. C. Schlegel. The price of anarchy in network creation games is (mostly) constant. In International Symposium on Algorithmic Game Theory, pages 276–287. Springer, 2010. [13] I. Reiman. Über ein problem von k. zarankiewicz. Acta Mathematica Hungarica, 9(3-4):269–273, 1958. [14] Y. Song and M. van der Schaar. Dynamic network formation with incomplete infor- mation. Economic Theory, 59(2):301–331, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72547 | - |
| dc.description.abstract | 由具有決策性的人所形成的網路被廣泛運用在經濟學和電腦科學, 其中一個在電腦科學中最熱門的網路拓墣模型由 Febrikant [6] 等人提 出。之後,Mcbride [11] 基於沒有人可以知道整個網路結構的想法,提 出了一個框架去研究在一個網路中,不正確的看法導致的平衡。然 而,不正確的看法如何影響效能目前並沒有人研究。在本篇論文中, 我們考慮 n 位自私的人,每個人建造連結的花費是 α,對於 u 和 v 這 兩個人來說,這彼此的距離為 dist(u, v),每個人最多可以看到的範圍 是 x。對於每個人來說,他的花費是所有他建造的連結乘上 α 加上他 與其他所有人的距離總和。我們便利用 conjectural PoA 和 conjectural PoS 去分析一個不完美監督賽局的效能。
我們根據不同的 x 和 α,給出了 conjectural PoA/PoS 的範圍。在conjectural PoA 上界的部分,在 x ≥ 2 時,conjectural PoA 是 O(√α);在 conjectural PoA 下界的部分,得到了 x = 1 時,conjectural PoA 是Ω(α);如果 x ≥ 2, α = Θ(n),可以得到 conjectural PoA 是 Ω(√x n)。而當 x > ⌊2√α⌋ + 1 時,conjectural PoA 會等價於 PoA。我們也得到了當 k ∈ N, k ≥ 5,α <√(k−4)n/2 , 且 x ≥ k + 3 時,conjectural PoA 最大是 k+1。另一方面,除了在 1 < α < 2, x = 1 的情況下,conjectural PoS 會等價於 Fabricant [6] 得到的 PoS。而在 1 < α < 2, x = 1 的情況下, conjectural PoS 會是 1。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:00:41Z (GMT). No. of bitstreams: 1 ntu-108-R06921080-1.pdf: 1389885 bytes, checksum: 583b8069a0e6340311fcf429735871ab (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 iii
摘要 v Abstract vii 1 Introduction 1 2 Model 7 2.1 Network creation game 7 2.2 Perfect and imperfect monitoring 8 2.3 Nash equilibrium 10 2.4 conjectural equilibrium 11 2.5 social optimum 11 2.6 PoS and PoA 11 2.7 conjectural PoS and conjectural PoA 12 3 Main Results 13 3.1 conjectural PoS 13 3.2 upper bound of the conjectural PoA 14 3.2.1 conjectural PoA with x=1 15 3.2.2 upper bound of the expected distance 15 3.2.3 upper bound of the total connection cost 17 3.2.4 obtain the upper bound of the conjectural PoA 18 3.3 lower bound of the conjectural PoA 19 3.3.1 Moore graph 20 3.3.2 construct conjectural equilibrium 21 3.3.3 lower bound of the conjectural PoA 21 3.4 constant bound of the conjectural PoA 22 4 Conclusion and Future work 25 Bibliography 27 | |
| dc.language.iso | en | |
| dc.subject | 社群網路 | zh_TW |
| dc.subject | 網路拓墣 | zh_TW |
| dc.subject | 不完美監督 | zh_TW |
| dc.subject | 賽局理論 | zh_TW |
| dc.subject | Network Formation | en |
| dc.subject | Imperfect Monitoring | en |
| dc.subject | Social Network | en |
| dc.subject | Game Theory | en |
| dc.title | 不完美監督賽局之分析 | zh_TW |
| dc.title | On the analysis of network creation game with imperfect monitoring | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊全,魏宏宇(Hung-Yu Wei),呂學一(Hsueh-I Lu) | |
| dc.subject.keyword | 網路拓墣,不完美監督,社群網路,賽局理論, | zh_TW |
| dc.subject.keyword | Network Formation,Imperfect Monitoring,Social Network,Game Theory, | en |
| dc.relation.page | 28 | |
| dc.identifier.doi | 10.6342/NTU201902320 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 1.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
