Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 管理學院企業管理專班(Global MBA)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72538
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孔令傑(Ling-Chieh Kung)
dc.contributor.authorChu-Lien Kuen
dc.contributor.author古竺璉zh_TW
dc.date.accessioned2021-06-17T07:00:32Z-
dc.date.available2021-02-22
dc.date.copyright2021-02-22
dc.date.issued2020
dc.date.submitted2021-01-14
dc.identifier.citationArkieva. (2018). Why is Demand Forecasting important for effective Supply Chain Management? Retrieved from https://blog.arkieva.com on December 10, 2020.
BCG. (2018). Unlocking Growth in CPG with AI and Advanced Analytics. Retrieved from https://www.bcg.com on December 8, 2020
Epstein, R., Neely, A., Weintraub, A., Valenzuela, F., Hurtado, S., Gonzalez, G., Beiza, A., Naveas, M., Infante, F., Alarcon, F., Angulo, G., Berner, C., Catalan, J., Gonzalez, C., Yung, D. (2012, January–February). A Strategic Empty Container Logistics Optimization in a Major Shipping Company. Interfaces, 42(1), pp. 5-16.
Forbes. (2014). Two Key Executives Leave Walgreen Due To a $1 Billion Forecasting Error. Retrieved from https://www.forbes.com on December 15, 2020.
Mckinsey. (2020). Supply-chain recovery in coronavirus times—plan for now and the future. Retrieved from https://www.mckinsey.com on December 8, 2020
Pekgün, P., Menich, R. P., Acharya, S., Finch, P. G., Deschamps, F., Mallery, K., Sistine, J. V., Christianson, K., Fuller, J. (2013, January-February). Carlson Rezidor Hotel Group Maximizes Revenue through Improved Demand Management and Price Optimization. Interfaces, 43(1), pp. 21-36.
Thomopoulos, N. T. (2015). Demand Forecasting for Inventory Control. Springer
Zhang, X., Meiser, D., Liu, Y., Bonner, B., Lin, L. (2014, January-February). Kroger Uses Simulation-Optimization to Improve Pharmacy Inventory Management. Interfaces, 44(1), pp. 70-84.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72538-
dc.description.abstractNONEzh_TW
dc.description.abstractIn this thesis, we research a cosmetics company’s sales forecasting. We analyze the sales data from 2017 to 2020, a total of 38 months sales record. The objective of this study is to find the best forecasting model automatically. We implement twelve models using four time series forecasting methods, including Moving Average, Linear Regression, Exponential Smoothing, and Holt-Winter Exponential Smoothing, with three different ways of applying seasonality. Among the top 100 sales items, we improve the accuracy of forecasting averagely by 12.9% and increase the forecasting performance for more than half of the items by more than 20% by using the proposed models.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:00:32Z (GMT). No. of bitstreams: 1
U0001-1301202115263300.pdf: 1579567 bytes, checksum: 0784a0205fce7244107ad3a747197bab (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContests
Abstract I
List of Tables II
List of Figures III
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Research objectives 3
1.3 Research plan 4
Chapter 2 Literature Review 5
Chapter 3 Research Methods 9
3.1 Data collection 9
3.2 Data preprocessing 10
3.3 Forecasting methods 12
3.3.1 Evaluation of Accuracy 13
3.3.2 Time series methods 13
3.3.2.1 Moving Average 13
3.3.2.2 Linear Regression 14
3.3.2.3 Exponential Smoothing 15
3.3.2.4 Holt-Winters Exponential Smoothing 17
3.3.3 Seasonal indices 18
3.3.4 Proposed forecasting frameworks 21
Chapter 4 Analysis and Results 22
4.1 Training Set and Testing Set 22
4.2 Current Forecasting Method 23
4.3 Proposed Forecasting Method 25
4.4 Result of applying seasonality 27
Chapter 5 Conclusions 29
Bibliography 31
Appendix 33

dc.language.isoen
dc.subject線性迴歸zh_TW
dc.subject移動平均zh_TW
dc.subject時間序列zh_TW
dc.subject自動化選擇zh_TW
dc.subject需求預測zh_TW
dc.subject指數平滑zh_TW
dc.subjecttime seriesen
dc.subjectExponential Smoothingen
dc.subjectLinear Regressionen
dc.subjectMoving Averageen
dc.subjectHolt-Winters Exponential Smoothingen
dc.subjectautomatic model selectionen
dc.subjectsales forecastingen
dc.title銷售預測之自動化方法選擇:理論模型與實證研究zh_TW
dc.titleDemand Forecasting by Automatic Model Selectionen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee柯冠州(Kuan-Chou Ko),陳聿宏(Yu-Hung Chen)
dc.subject.keyword需求預測,自動化選擇,時間序列,移動平均,線性迴歸,指數平滑,zh_TW
dc.subject.keywordsales forecasting,automatic model selection,time series,Moving Average,Linear Regression,Exponential Smoothing,Holt-Winters Exponential Smoothing,en
dc.relation.page35
dc.identifier.doi10.6342/NTU202100054
dc.rights.note有償授權
dc.date.accepted2021-01-14
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept企業管理碩士專班zh_TW
顯示於系所單位:管理學院企業管理專班(Global MBA)

文件中的檔案:
檔案 大小格式 
U0001-1301202115263300.pdf
  未授權公開取用
1.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved