請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72537
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 于昌平 | |
dc.contributor.author | Guo-Ping Li | en |
dc.contributor.author | 李國萍 | zh_TW |
dc.date.accessioned | 2021-06-17T07:00:31Z | - |
dc.date.available | 2022-08-05 | |
dc.date.copyright | 2019-08-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-01 | |
dc.identifier.citation | Abdel-Raouf, N., Al-Homaidan, A. A., &Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275.
Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., &Dragone, G. (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 118, 61–66. Acién, F. G., Molina, E., Reis, A., Torzillo, G., Zittelli, G. C., Sepúlveda, C., &Masojídek, J. (2017). Photobioreactors for the production of microalgae. Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products, 1–44. Barreiro, D. L., Zamalloa, C., Boon, N., Vyverman, W., Ronsse, F., Brilman, W., & Prins, W. (2013). Influence of strain-specific parameters on hydrothermal liquefaction of microalgae. Bioresource technology, 146, 463-471. Benemann, J. R., &Creek, W. (1997). CO 2 MITIGATION WITH MICROALGAE SYSTEMS John R. Benemann 343 Caravelle Drive, Walnut Creek, CA 94598, U.S.A. Energy, 38(96), 475–479. Beuckels, A., Smolders, E., &Muylaert, K. (2015). Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Research, 77, 98–106. Bhatnagar, A., Chinnasamy, S., Singh, M., &Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425–3431. Biller, P., &Ross, A. B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 102(1), 215–225. Biller, P., Ross, A. B., Skill, S. C., Lea-Langton, A., Balasundaram, B., Hall, C., ... & Llewellyn, C. A. (2012). Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Research, 1(1), 70-76. Brennan, L., &Owende, P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. Cai, T., Park, S. Y., &Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. Chakraborty, M., Miao, C., McDonald, A., & Chen, S. (2012). Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology. Fuel, 95, 63-70. Channiwala, S. A., & Parikh, P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051-1063. Cheirsilp, B., & Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource technology, 110, 510-516. Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., …Chang, J. S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10. Christenson, L., &Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29(6), 686–702. Correa, D. F., Beyer, H. L., Possingham, H. P., Thomas-Hall, S. R., &Schenk, P. M. (2017). Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels. Renewable and Sustainable Energy Reviews, 74(October 2016), 1131–1146. De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource technology, 101(6), 1611-1627. DeJesus Raposo, M. F., DeMorais, R. M. S. C., &DeMorais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life Sciences, 93(15), 479–486. Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18-26. Dragone, G., Fernandes, B. D., Abreu, A. P., Vicente, A. A., & Teixeira, J. A. (2011). Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 88(10), 3331-3335. Franchino, M., Comino, E., Bona, F., & Riggio, V. A. (2013). Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere, 92(6), 738-744. Geider, R., &LaRoche, J. (2011). Redfield revisited : variability of C : N : P in marine microalgae and its biochemical basis Redfield revisited : variability of C : N : P in marine microalgae and its biochemical basis. Eur. J. Phycol. British Phycological Society, 37(May 2013), 37–41. Gunaseelan, V. N. (1997). Anaerobic digestion of biomass for methane production: a review. Biomass and bioenergy, 13(1-2), 83-114. Hasegawa, T., Matsuguchi, T., Noda, K., Tanaka, K., Kumamoto, S., Shoyama, Y., & Yoshikai, Y. (2002). Toll-like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from Chlorella vulgaris. International immunopharmacology, 2(4), 579-589. Heredia-Arroyo, T., Wei, W., Ruan, R., &Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35(5), 2245–2253. Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource technology, 113, 244-252. Hu, C. W., Chuang, L. T., Yu, P. C., & Chen, C. N. N. (2013). Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food chemistry, 138(4), 2071-2078. Huber, G. W., Iborra, S., &Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044–4098. Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., & Franco, T. T. (2009). Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification, 48(1), 306-310. Jazrawi, C., Biller, P., He, Y., Montoya, A., Ross, A. B., Maschmeyer, T., & Haynes, B. S. (2015). Two-stage hydrothermal liquefaction of a high-protein microalga. Algal research, 8, 15-22. Jones, D. B. (1931). Factors for converting percentages of nitrogen in foods and feeds into percentages of protein. USDA Circ., 183, 1-21. Kamiya, A., & Kowallik, W. (1987). Photoinhibition of glucose uptake in Chlorella. Plant and cell physiology, 28(4), 611-619. Khoshmanesh, A., Lawson, F., & Prince, I. G. (1997). Cell surface area as a major parameter in the uptake of cadmium by unicellular green microalgae. The Chemical Engineering Journal and The Biochemical Engineering Journal, 65(1), 13-19. Kim, S., Park, J. eun, Cho, Y. B., &Hwang, S. J. (2013). Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresource Technology, 144, 8–13. Kommareddy, A., & Anderson, G. (2003). Study of light as a parameter in the growth of algae in a photo-bio reactor (PBR). In 2003 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers. Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., …vanLangenhove, H. (2010). Enhanced CO 2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends in Biotechnology, 28(7), 371–380. Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae–A promising tool for heavy metal remediation. Ecotoxicology and environmental safety, 113, 329-352. Lavoie, A., & De la Noüe, J. (1985). Hyperconcentrated cultures of Scenedesmus obliquus: a new approach for wastewater biological tertiary treatment?. Water research, 19(11), 1437-1442. Lee, Y. K. (1997). Commercial production of microalgae in the Asia-Pacific rim. Journal of Applied Phycology, 9(5), 403–411. Leow, S., Witter, J. R., Vardon, D. R., Sharma, B. K., Guest, J. S., &Strathmann, T. J. (2015). Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition. Green Chemistry, 17(6), 3584–3599. Levy, J. L., Stauber, J. L., & Jolley, D. F. (2007). Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Science of the Total Environment, 387(1-3), 141-154. Li, D., Zhao, Y., Ding, W., Zhao, P., Xu, J. W., Li, T., ... & Yu, X. (2017). A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatonin and photoinduction. Bioresource technology, 235, 104-112. Li, H., Liu, Z., Zhang, Y., Li, B., Lu, H., Duan, N., ... & Si, B. (2014). Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresource technology, 154, 322-329. Li, X., Xu, H., &Wu, Q. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98(4), 764–771. Liang, Y., Sarkany, N., &Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7), 1043–1049. López Barreiro, D., Prins, W., Ronsse, F., &Brilman, W. (2013). Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass and Bioenergy, 53(0), 113–127. Lourenço, S. O., Barbarino, E., Lavín, P. L., Lanfer Marquez, U. M., & Aidar, E. (2004). Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. European Journal of Phycology, 39(1), 17-32. Luo, L., He, H., Yang, C., Wen, S., Zeng, G., Wu, M., ... & Lou, W. (2016). Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater. Bioresource technology, 216, 135-141. Mandal, S., &Mallick, N. (2011). Waste Utilization and Biodiesel Production by the Green Microalga Scenedesmus obliquus . Applied and Environmental Microbiology, 77(1), 374–377. Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied microbiology and biotechnology, 96(3), 631-645. Markou, G., &Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Applied Energy, 88(10), 3389–3401. Mata, T. M., Martins, A. A., &Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. Matamoros, V., Gutiérrez, R., Ferrer, I., García, J., & Bayona, J. M. (2015). Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. Journal of hazardous materials, 288, 34-42. Milledge, J. J. (2011). Commercial application of microalgae other than as biofuels: A brief review. Reviews in Environmental Science and Biotechnology, 10(1), 31–41. Milledge, J. J., &Heaven, S. (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Biotechnology, 12(2), 165–178. Molina Grima, E., Belarbi, E.-H., Acién Fernández, F. G., Robles Medina, A., &Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20(7–8), 491–515. Retrieved from Mulbry, W., Kondrad, S., &Buyer, J. (2008). Treatment of dairy and swine manure effluents using freshwater algae: Fatty acid content and composition of algal biomass at different manure loading rates. Journal of Applied Phycology, 20(6), 1079–1085. Naik, S. N., Goud, V.V., Rout, P. K., &Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. Peccia, J., Haznedaroglu, B., Gutierrez, J., & Zimmerman, J. B. (2013). Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends in biotechnology, 31(3), 134-138. Perales-Vela, H. V., Pena-Castro, J. M., & Canizares-Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64(1), 1-10. Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., &Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1), 11–36. Piccini, M., Raikova, S., Allen, M. J., &Chuck, C. J. (2019). A synergistic use of microalgae and macroalgae for heavy metal bioremediation and bioenergy production through hydrothermal liquefaction. Sustainable Energy and Fuels, 3(1), 292–301. Pizarro, C., Mulbry, W., Blersch, D., & Kangas, P. (2006). An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecological engineering, 26(4), 321-327. Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences. Sevilla, M., Gu, W., Falco, C., Titirici, M. M., Fuertes, A. B., & Yushin, G. (2014). Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors. Journal of Power Sources, 267, 26-32. Shakya, R., Whelen, J., Adhikari, S., Mahadevan, R., & Neupane, S. (2015). Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Research, 12, 80-90. Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., ... & Peltier, G. (2011). Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC biotechnology, 11(1), 7. Silva, N. F. P., Gonçalves, A. L., Moreira, F. C., Silva, T. F. C. V., Martins, F. G., Alvim-Ferraz, M. C. M., …Pires, J. C. M. (2015). Towards sustainable microalgal biomass production by phycoremediation of a synthetic wastewater: A kinetic study. Algal Research, 11, 350–358. Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production–A review. Renewable and Sustainable Energy Reviews, 16(4), 2347-2353. Spolaore, P., Joannis-Cassan, C., Duran, E., &Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96. Toor, S. S., Reddy, H., Deng, S., Hoffmann, J., Spangsmark, D., Madsen, L. B., ... & Rosendahl, L. A. (2013). Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions. Bioresource Technology, 131, 413-419. Vardon, D. R., Sharma, B. K., Scott, J., Yu, G., Wang, Z., Schideman, L., ... & Strathmann, T. J. (2011). Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresource technology, 102(17), 8295-8303. Voltolina, D., Gómez-Villa, H., &Correa, G. (2005). Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresource Technology, 96(3), 359–362. Wahidin, S., Idris, A., & Shaleh, S. R. M. (2013). The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource technology, 129, 7-11. Whitton, R., LeMével, A., Pidou, M., Ometto, F., Villa, R., &Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371–378. Xu, H., Miao, X., &Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126(4), 499–507. Xu, M., Bernards, M., & Hu, Z. (2014). Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor. Bioresource technology, 153, 383-387. Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy conversion and management, 45(5), 651-671. Yu, G., Zhang, Y., Schideman, L., Funk, T. L., & Wang, Z. (2011). Hydrothermal liquefaction of low lipid content microalgae into bio-crude oil. Transactions of the ASABE, 54(1), 239-246. Yu, G., Zhang, Y., Schideman, L., Funk, T., &Wang, Z. (2011). Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy and Environmental Science, 4(11), 4587–4595. Yuan, J. P., Peng, J., Yin, K., &Wang, J. H. (2011). Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Molecular Nutrition and Food Research, 55(1), 150–165. Zemke, P. E., Sommerfeld, M. R., &Hu, Q. (2013). Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors. Applied Microbiology and Biotechnology, 97(12), 5645–5655. Zou, S., Wu, Y., Yang, M., Li, C., & Tong, J. (2010). Bio-oil production from sub-and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties. Energy & Environmental Science, 3(8), 1073-1078. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72537 | - |
dc.description.abstract | 目前石化燃料的短缺危機,以及燃燒後排放大量二氧化碳造成的環境問題,開發低污染生質能源的需求迫在眉睫。微藻是生長速度快,無須占用耕地的微生物,同時在生長過程中能夠去除氮磷營養鹽,在適當的培養條件下還可累積不同比例的脂質、醣類與蛋白質,做為轉化成生質能源之原料。
以實驗室既有及自行從汙水廠放流水篩分出之微藻做為目標藻種,在BG11培養基中培養至快速生長期及穩定期,及另外以C. vulgaris與自行篩選之三株微藻,在人工合成廢水中額外添加有機碳源培養10天,觀測其生化組成(脂質、醣類及蛋白質)之特性,結果顯示微藻累積脂質與氮限制及壓力環境有關,醣類累積之差異則與本身藻種特性有關,培養基中之氮濃度,會直接影響其細胞累積之氮的比例,進而影響蛋白質含量的推算。 利用微藻去除氮磷營養鹽與產生質能源之應用,在與環境中其他微生物共存下之氮磷去除率皆接近100%,葡萄糖去除率也可達30%左右,在單純以合成廢水培養微藻的實驗中,C. vulgaris對於硝酸根之去除效率可達近100%,而7天的批次實驗中磷酸根的去除率為58.5%至88.0%,相較於有微生物共培養之實驗,推測培養基中含有有機碳,使環境中微生物與微藻共生,可促進微藻生長及去除氮磷營養鹽,使得氮磷營養鹽去除效率明顯高於單以合成廢水培養。 以水熱液化法(Hydrothermal Liquefaction, HTL)轉換微藻生物質產生物油,則因進料濃度以及體積不足,以及未找到最佳操作條件,故並無足夠產量進行分析,僅可確定經HTL反應後生物質大部分會轉為液相。 | zh_TW |
dc.description.abstract | Due to the lack of the fossil fuel, new energy types are widely studied. Microalgae grow fast and do not occupy any arable land. As their growing, microalgae can consume the nutrients and help clean the water.
Three microalgae strains were isolated from the local wastewater treatment plant in Taipei. Four strains from the culture collection and the three new strains were cultivated in BG11, respectively. The biochemical-compositions of these 7 microalgae are analyzed. Furthermore, synthetic wastewater is used as well in cultivating the newly isolated algae to get more details of their characteristics. The results from the 2 different culture media show that the protein contents are dependent on the concentration of nitrogen, and the carbohydrate and lipid contents are related to the limitation of nitrogen and the differences between the strains. The removal efficiencies of nitrate was good and phosphate were unobvious when the microalgae are cultivated in synthetic wastewater without organic carbon. On the opposite, the efficiencies are outstanding when the microalgae are cultivated with other microorganisms and glucose. The bio-oil was converted from microalgae biomass using HTL. The yield of the bio-oil is related to the operating conditions such as temperature, pressure and holding time. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:00:31Z (GMT). No. of bitstreams: 1 ntu-108-R06541124-1.pdf: 3684214 bytes, checksum: e6ddb43bab55047ceede164c8018af8d (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究架構 4 第二章 文獻回顧 5 2.1 微藻培養 5 2.1.1 營養模式 6 2.1.2 光照強度 12 2.2 收穫方法 13 2.3 生化成分 14 2.3.1 脂質 14 2.3.2 醣類 15 2.3.3 蛋白質 16 2.3.4 高價值成分 16 2.4 應用微藻之廢水處理 19 2.4.1 氮磷營養鹽去除 19 2.4.2 新興汙染物去除 20 2.4.3 重金屬去除 21 2.5 資源化 22 2.5.1 發展歷史 22 2.5.2 水熱液化法原理與機制 24 2.5.3 現況 26 第三章 材料與方法 29 3.1實驗設備及藥品 29 3.1.1 實驗設備 29 3.1.2 實驗藥品 30 3.2實驗設計與流程 32 3.3實驗方法及步驟 34 3.3.1 藻種分離與鑑定 34 3.3.2 藻種培養 37 3.3.3 生長曲線及定量計數 38 3.3.4 水熱液化法 39 3.3.5 分析方法及步驟 43 第四章 結果與討論 48 4.1 藻類純化 48 4.1.1 藻種鑑定 48 4.2 光合自營培養 54 4.2.1 生長曲線 54 4.2.2 生化特性 57 4.3 混營培養 61 4.3.1 生長曲線 61 4.3.2 生化特性 63 4.4 應用 67 4.4.1 氮磷營養鹽去除 67 4.4.2 水熱液化產生物油 75 第五章 結論與建議 78 5.1 結論 78 5.2 建議 79 參考文獻 80 | |
dc.language.iso | zh-TW | |
dc.title | 自污水廠分離之微藻生化組成特性及其營養鹽利用之研究 | zh_TW |
dc.title | Study of Biochemical-Composition Characteristic and Nutrients Utilization of Microalgae Screened from Wastewater Treatment Plant | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江殷儒,郭獻文 | |
dc.subject.keyword | 微藻,生化組成特性,營養鹽去除,水熱液化, | zh_TW |
dc.subject.keyword | microalgae,biochemical compositions,nutrient removal,HTL, | en |
dc.relation.page | 90 | |
dc.identifier.doi | 10.6342/NTU201901947 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-02 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。