Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72533
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成
dc.contributor.authorHsi-Shen Chenen
dc.contributor.author陳希聖zh_TW
dc.date.accessioned2021-06-17T07:00:27Z-
dc.date.available2029-08-01
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-01
dc.identifier.citation1. Sayiner, M., et al., Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clinics in liver disease, 2016. 20(2): p. 205-214.
2. Hsu, C.-S. and J.-H. Kao, Non-alcoholic fatty liver disease: an emerging liver disease in Taiwan. Journal of the Formosan Medical Association, 2012. 111(10): p. 527-535.
3. NOMURA, H., et al., Prevalence of fatty liver in a general population of Okinawa, Japan. Japanese journal of medicine, 1988. 27(2): p. 142-149.
4. Chan, D., et al., Hepatic steatosis in obese Chinese children. International journal of obesity, 2004. 28(10): p. 1257.
5. Burckhardt, C.B., Speckle in ultrasound B-mode scans. IEEE Transactions on Sonics and ultrasonics, 1978. 25(1): p. 1-6.
6. Sigelmann, R.A. and J.M. Reid, Analysis and measurement of ultrasound backscattering from an ensemble of scatterers excited by sine‐wave bursts. The Journal of the Acoustical Society of America, 1973. 53(5): p. 1351-1355.
7. Holasek, E., et al., A method for spectra‐color B‐scan ultrasonography. Journal of Clinical Ultrasound, 1975. 3(3): p. 175-178.
8. Tuthill, T., R. Sperry, and K. Parker, Deviations from Rayleigh statistics in ultrasonic speckle. Ultrasonic imaging, 1988. 10(2): p. 81-89.
9. Weng, L., et al., Ultrasound speckle analysis based on the K distribution. The Journal of the Acoustical Society of America, 1991. 89(6): p. 2992-2995.
10. Shankar, P.M., A general statistical model for ultrasonic backscattering from tissues. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2000. 47(3): p. 727-736.
11. Wang, L., A new statistical approach for texture analysis. Photogrammetric Engineering and Remote Sensing, 1990. 56(1): p. 61-66.
12. Gaitini, D., et al., Feasibility study of ultrasonic fatty liver biopsy: texture vs. attenuation and backscatter. Ultrasound in medicine & biology, 2004. 30(10): p. 1321-1327.
13. Wu, C.-C., et al., Prediction of fatty liver disease using machine learning algorithms. Computer methods and programs in biomedicine, 2019. 170: p. 23-29.
14. Mihailescu, D.M., et al., Computer aided diagnosis method for steatosis rating in ultrasound images using random forests. Medical ultrasonography, 2013. 15(3): p. 184-190.
15. Hughes, M.S., Analysis of digitized waveforms using Shannon entropy. The Journal of the Acoustical Society of America, 1993. 93(2): p. 892-906.
16. Tsui, P.-H. and Y.-L. Wan, Effects of fatty infiltration of the liver on the Shannon entropy of ultrasound backscattered signals. Entropy, 2016. 18(9): p. 341.
17. O'Donnell, M., et al. Broadband integrated backscatter: An approach to spatially localized tissue characterization in vivo. in 1979 Ultrasonics Symposium. 1979. IEEE.
18. Meziri, M., et al., In vitro chronic hepatic disease characterization with a multiparametric ultrasonic approach. Ultrasonics, 2005. 43(5): p. 305-313.
19. Yang, H.-T., et al., Ultrasonic integrated backscatter in assessing liver steatosis before and after liver transplantation. Hepatobiliary & Pancreatic Diseases International, 2014. 13(4): p. 402-408.
20. Joseph, A., et al., Comparison of liver histology with ultrasonography in assessing diffuse parenchymal liver disease. Clinical radiology, 1991. 43(1): p. 26-31.
21. Kanayama, Y., et al., Real-time ultrasound attenuation imaging of diffuse fatty liver disease. Ultrasound in medicine & biology, 2013. 39(4): p. 692-705.
22. Sattar, N., E. Forrest, and D. Preiss, Non-alcoholic fatty liver disease. bmj, 2014. 349: p. g4596.
23. Ying-Chin, L., et al., Risk factors and predictors of non-alcoholic fatty liver disease in Taiwan. Annals of hepatology, 2016. 10(2): p. 125-132.
24. Brown, G.T. and D.E. Kleiner, Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism, 2016. 65(8): p. 1080-1086.
25. Kleiner, D.E., et al., Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, 2005. 41(6): p. 1313-1321.
26. McCarthy, J., et al., A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 2006. 27(4): p. 12.
27. Quinlan, J.R., Induction of decision trees. Machine learning, 1986. 1(1): p. 81-106.
28. Shannon, C.E., A mathematical theory of communication. Bell system technical journal, 1948. 27(3): p. 379-423.
29. Quinlan, J.R., C 4.5: Programs for machine learning. Elsevier, 1993.
30. Hansen, L.K. and P. Salamon, Neural network ensembles. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1990(10): p. 993-1001.
31. Breiman, L., Bagging predictors. Machine learning, 1996. 24(2): p. 123-140.
32. Breiman, L., Random forests. Machine learning, 2001. 45(1): p. 5-32.
33. Zimmer, Y., S. Akselrod, and R. Tepper, The distribution of the local entropy in ultrasound images. Ultrasound in medicine & biology, 1996. 22(4): p. 431-439.
34. Zhou, Z., et al., Hepatic steatosis assessment with ultrasound small-window entropy imaging. Ultrasound in medicine & biology, 2018. 44(7): p. 1327-1340.
35. Thomas, L., et al., Quantitative real-time imaging of myocardium based on ultrasonic integrated backscatter. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1989. 36(4): p. 466-470.
36. Girault, J.-M., et al., Time-varying autoregressive spectral estimation for ultrasound attenuation in tissue characterization. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1998. 45(3): p. 650-659.
37. Shung, K.K., M. Smith, and B.M. Tsui, Principles of medical imaging. 2012: Academic Press.
38. Clark, J.M., F.L. Brancati, and A.M. Diehl, The prevalence and etiology of elevated aminotransferase levels in the United States. The American journal of gastroenterology, 2003. 98(5): p. 960-967.
39. Mihăilescu, D.M., et al. Automatic evaluation of steatosis by ultrasound image analysis. in 2012 10th International Symposium on Electronics and Telecommunications. 2012. IEEE.
40. Ferri, C., J. Hernández-Orallo, and P.A. Flach. A coherent interpretation of AUC as a measure of aggregated classification performance. in Proceedings of the 28th International Conference on Machine Learning (ICML-11). 2011.
41. Fitzpatrick, E. and A. Dhawan, Noninvasive biomarkers in non-alcoholic fatty liver disease: current status and a glimpse of the future. J World journal of gastroenterology: WJG, 2014. 20(31): p. 10851.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72533-
dc.description.abstract近年來肝病已成台灣主要關注的疾病之一,並且其最大的風險因素-脂肪肝也漸漸被國人所重視,脂肪肝早期都是處於可逆的病變,但是若演變為肝纖維化後期,甚至會導致肝硬化,所以早期的診斷與治療特別的重要,目前病理切片為脂肪肝診斷之黃金標準,但因為其是侵入式的診斷方式,臨床上並不容易實施,而在其他影像診斷方式中,超音波因為其非侵入性、無放射性、可重複使用、以及方便操作與價格低廉等等原因,目前已成為臨床上診斷脂肪肝的最佳方式。
  但是由於超音波及時成像的特性,在操作上需要有訓練有素的人員,並且觀察者之間的經驗差距會導致不同的超音波診斷結果,因此產生了定量式超音波,本研究旨在使用三個代表不同意義的超音波特徵,分別是夏農熵(Shannon entropy, SE),代表了肝實質在超音波影像中的微結構變化;衰退係數(Attenuation coefficient, AE),為一個可以量化超音波在介質中衰退狀況的係數;集成逆散射(Integrated backscatter, IB),則是一個可以表示平均功率的函數,此三個超音波特徵結合醫師在臨床常使用用來判斷脂肪肝的三個特徵,身高體重指數(Body Mass Index, BMI)與天冬氨酸氨基轉移酶(Aspartate Transaminase, AST)、谷丙轉氨酶(Alanine transaminase, ALT),來輔助醫師診斷脂肪肝。
  本研究利用機器學習中的隨機森林演算法,結合上述所提到的六個特徵來訓練隨機森林模型判斷出5%脂肪肝病人以及33%脂肪肝病人,最終在5%的二分類模型上達到了80.3%的準確度,而33%二分類模型更是達到了90.1%的準確度。而在三分類上,直接訓練一個三分類模型的準確度達到了68.8%,而利用兩個二分類模型所達到的三分類效果則可以提升到72.1%。
zh_TW
dc.description.abstractIn recent years, liver disease has become one of the main diseases of Taiwan, and its priority risk factor fatty liver disease is gradually taken more seriously. Fatty liver disease is in a reversible path in the early stage, but if it goes into the later stage of fibrosis, it may even cause cirrhosis, therefore early diagnosis and treatment are particularly important. The current gold standard for fatty liver diagnosis is liver biopsy. However, it is impractical as a diagnostic tool for it is an invasive diagnostic method. In other imaging methods, ultrasound is the best way to diagnose fatty liver because of its non-invasive, non-radioactive, reusable and low cost.
However, due to the characteristics of ultrasonic imaging in time, it is necessary to have well-trained personnel in operation and the experience gap between observers will lead to different ultrasonic diagnosis results. Thus quantitative ultrasonic method was created. This study aims to use three ultrasound features representing different meanings are Shannon entropy (SE), which represents the microstructure change of the liver parenchyma in the ultrasound image; the attenuation coefficient (AE) is a quantifiable coefficient of the attenuation of the sound wave in the medium; Integrated backscatter (IB) is a function that can represent the average power. These three ultrasound features are combined with the three characteristics commonly used by doctors to determine fatty liver. Body Mass Index (BMI) and Aspartate Transaminase (AST), Alanine transaminase (ALT), to assist doctors in the diagnosis of fatty liver.
This study used random forest algorithm in machine learning, combined with the six features mentioned above to train a random forest model to determine 5% fatty liver patients and 33% fatty liver patients, and finally reached a 5% binary classification model 80.3% accuracy and the 33% binary classification model achieved an accuracy of 90.1%. In the three classifications, the accuracy of directly training a multiclass model reached 68.8%, while the accuracy of the multiclass model by using successive dichotomies can be improved to 72.1%.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:00:27Z (GMT). No. of bitstreams: 1
ntu-108-R06543025-1.pdf: 5908882 bytes, checksum: 0d9e08943599adb2edf409d81d17f630 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖索引 viii
表索引 xii
第一章 緒論 1
1.1 研究動機 1
1.2 超音波影像簡介 4
1.3 文獻探討 6
1.3.1 定量式超音波 6
1.3.2 機器學習輔助診斷 8
1.3.3 脂肪肝特徵參數 9
1.4 研究目的 10
第二章 理論基礎 11
2.1 機器學習 11
2.2 隨機森林 13
2.2.1 決策樹 13
2.2.2 集成學習 17
2.2.3 隨機森林 19
2.3 脂肪肝特徵 21
2.3.1 訊息理論熵 21
2.3.2 集成逆散射 22
2.3.3 衰退係數 23
2.3.4 肝發炎指數 26
第三章 材料與方法 27
3.1 數據收集 27
3.1.1 資料來源 27
3.1.2 超音波掃描 28
3.2 脂肪肝特徵擷取 29
3.3 實驗流程 30
3.4 訓練模型 31
3.5 驗證模型 33
3.5.1 混淆矩陣 33
3.5.2 接收者操作特徵曲線 35
第四章 結果與討論 37
4.1 特徵分析 37
4.2 二分類結果 45
4.2.1 單一特徵模型 45
4.2.2 多特徵模型 50
4.2.3 二分類隨機森林模型參數 56
4.3 三分類結果 58
4.3.1 單一特徵模型 58
4.3.2 多特徵模型 62
4.3.3 三分類隨機森林模型參數 66
4.3.4 連續二分法-三分類模型 67
4.4 討論 72
第五章 結論與未來展望 73
5.1 結論 73
5.2 未來展望 74
參考文獻 75
dc.language.isozh-TW
dc.subject脂肪肝zh_TW
dc.subject隨機森林zh_TW
dc.subject逆散射訊號zh_TW
dc.subject超音波zh_TW
dc.subjectultrasounden
dc.subjectbackscattered signalen
dc.subjectfatty liver diseaseen
dc.subjectrandom foresten
dc.title使用隨機森林實現超音波多特徵脂肪肝疾病分類zh_TW
dc.titleUltrasound multifeature classification of fatty liver disease using random forestsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor崔博翔
dc.contributor.oralexamcommittee林真真,黃執中,朱錦洲,陳建甫
dc.subject.keyword超音波,逆散射訊號,脂肪肝,隨機森林,zh_TW
dc.subject.keywordultrasound,backscattered signal,fatty liver disease,random forest,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201902361
dc.rights.note有償授權
dc.date.accepted2019-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
5.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved