請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72532完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武(Tung-Wu Lu) | |
| dc.contributor.author | Kuan-Wen Wu | en |
| dc.contributor.author | 吳冠彣 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:00:26Z | - |
| dc.date.available | 2029-07-30 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-02 | |
| dc.identifier.citation | [1] S.L. Weinstein, L.A. Dolan, J.C. Cheng, A. Danielsson, J.A. Morcuende, Adolescent idiopathic scoliosis, Lancet 371(9623) (2008) 1527-37.
[2] N. Chockalingam, S. Bandi, A. Rahmatalla, P.H. Dangerfield, N. Ahmed el, Assessment of the centre of pressure pattern and moments about S2 in scoliotic subjects during normal walking, Scoliosis 3 (2008) 10. [3] M.R. Konieczny, H. Senyurt, R. Krauspe, Epidemiology of adolescent idiopathic scoliosis, J. Child. Orthop. 7(1) (2013) 3-9. [4] S.L. Weinstein, L.A. Dolan, J.C. Cheng, A. Danielsson, J.A. Morcuende, Adolescent idiopathic scoliosis, Lancet 371(9623) (2008) 1527-1537. [5] M.R. Konieczny, H. Senyurt, R. Krauspe, Epidemiology of adolescent idiopathic scoliosis, J. Child. Orthop. 7(1) (2013) 3-9. [6] N. Champain, Recherche des facteurs biomécaniques dans l'aggravation des scolioses idiopathiques, 2004. [7] R. Le Blanc, H. Labelle, F. Forest, B. Poitras, C.H. Rivard, Possible relationship between idiopathic scoliosis and morphologic somatotypes in adolescent females, Ann. Chir. 49(8) (1995) 762-7. [8] R.L. Cromwell, T.K. Aadland-Monahan, A.T. Nelson, S.M. Stern-Sylvestre, B. Seder, Sagittal plane analysis of head, neck, and trunk kinematics and electromyographic activity during locomotion, J. Orthop. Sports Phys. Ther. 31(5) (2001) 255-262. [9] P.D. Masso, G.E. Gorton, 3rd, Quantifying changes in standing body segment alignment following spinal instrumentation and fusion in idiopathic scoliosis using an optoelectronic measurement system, Spine (Phila Pa 1976) 25(4) (2000) 457-62. [10] I. Petersen, T. Sahlstrand, U. Sellden, Electroencephalographic investigation of patients with adolescent idiopathic scoliosis, Acta Orthop. Scand. 50(3) (1979) 283-93. [11] T. Sahlstrand, B. Petruson, A study of labyrinthine function in patients with adolescent idiopathic scoliosis. I. An electro-nystagmographic study, Acta Orthop. Scand. 50(6 Pt 2) (1979) 759-69. [12] P. Mahaudens, X. Banse, M. Mousny, C. Detrembleur, Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis, Eur. Spine J. 18(4) (2009) 512-521. [13] R.L. Barrack, T.S. Whitecloud, S.W. Burke, S.D. Cook, A.F. Harding, Proprioception in idiopathic scoliosis, Spine 9(7) (1984) 681-685. [14] M.L. Nault, P. Allard, S. Hinse, R. Le Blanc, O. Caron, H. Labelle, et al., Relations between standing stability and body posture parameters in adolescent idiopathic scoliosis, Spine (Phila Pa 1976) 27(17) (2002) 1911-1917. [15] P.Q. Chen, J.L. Wang, Y.H. Tsuang, T.L. Liao, P.I. Huang, Y.S. Hang, The postural stability control and gait pattern of idiopathic scoliosis adolescents, Clin. Biomech. (Bristol, Avon) 13(1 Suppl 1) (1998) S52-s58. [16] L.G. Lenke, R.R. Betz, T.R. Haher, M.A. Lapp, A.A. Merola, J. Harms, et al., Multisurgeon assessment of surgical decision-making in adolescent idiopathic scoliosis: Curve classification, operative approach, and fusion levels, Spine 26(21) (2001) 2347-2353. [17] T.G. Mahadewa, Adult Idiopathic Scoliosis: Correction or not?, 2018 7(2) (2018) 4. [18] F.E. Silva, L.G. Lenke, CHAPTER 7 - Adolescent Idiopathic Scoliosis, in: T.J. Errico, B.S. Lonner, A.W. Moulton (Eds.), Surgical Management of Spinal Deformities, W.B. Saunders, Philadelphia, 2009, pp. 97-118. [19] S. Mallau, G. Bollini, J.L. Jouve, C. Assaiante, Locomotor skills and balance strategies in adolescents idiopathic scoliosis, Spine (Phila Pa 1976) 32(1) (2007) E14-22. [20] S. Takahashi, N. Suzuki, T. Asazuma, K. Kono, T. Ono, Y. Toyama, Factors of thoracic cage deformity that affect pulmonary function in adolescent idiopathic thoracic scoliosis, Spine 32(1) (2007) 106-112. [21] T. Haumont, G.C. Gauchard, P. Lascombes, P.P. Perrin, Postural Instability in Early-Stage Idiopathic Scoliosis in Adolescent Girls, Spine 36(13) (2011) 847-854. [22] M. Syczewska, K. Graff, M. Kalinowska, E. Szczerbik, J. Domaniecki, Influence of the structural deformity of the spine on the gait pathology in scoliotic patients, Gait Posture 35(2) (2012) 209-213. [23] M. Syczewska, K. Graff, M. Kalinowska, E. Szczerbik, J. Domaniecki, Does the gait pathology in scoliotic patients depend on the severity of spine deformity? Preliminary results, Acta of bioengineering and biomechanics 12(1) (2010) 25-28. [24] S. Negrini, S. Donzelli, A.G. Aulisa, D. Czaprowski, S. Schreiber, J.C. de Mauroy, et al., 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth, Scoliosis and Spinal Disorders 13(1) (2018) 3. [25] R. Herman, J. Mixon, A. Fisher, R. Maulucci, J. Stuyck, Idiopathic scoliosis and the central nervous system: a motor control problem. The Harrington lecture, 1983. Scoliosis Research Society, Spine (Phila Pa 1976) 10(1) (1985) 1-14. [26] M. Simoneau, N. Richer, P. Mercier, P. Allard, N. Teasdale, Sensory deprivation and balance control in idiopathic scoliosis adolescent, Exp. Brain Res. 170(4) (2006) 576-582. [27] A.V. Bruyneel, P. Chavet, G. Bollini, P. Allard, E. Berton, S. Mesure, Dynamical asymmetries in idiopathic scoliosis during forward and lateral initiation step, Eur. Spine J. 18(2) (2009) 188-195. [28] A.V. Bruyneel, P. Chavet, E. Ebermeyer, S. Mesure, Idiopathic scoliosis: relations between the Cobb angle and the dynamical strategies when sitting on a seesaw, Eur. Spine J. 20(2) (2011) 247-253. [29] A.V. Bruyneel, P. Chavet, G. Bollini, P. Allard, S. Mesure, The influence of adolescent idiopathic scoliosis on the dynamic adaptive behaviour, Neurosci. Lett. 447(2-3) (2008) 158-63. [30] H.J. Park, T. Sim, S.W. Suh, J.H. Yang, H. Koo, J.H. Mun, Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis, Eur. Spine J. 25(2) (2016) 385-393. [31] J.H. Yang, S.W. Suh, P.S. Sung, W.H. Park, Asymmetrical gait in adolescents with idiopathic scoliosis, Eur. Spine J. 22(11) (2013) 2407-2413. [32] I.A. Kramers-de Quervain, R. Muller, A. Stacoff, D. Grob, E. Stussi, Gait analysis in patients with idiopathic scoliosis, Eur. Spine J. 13(5) (2004) 449-456. [33] G.C. Gauchard, P. Lascombes, M. Kuhnast, P.P. Perrin, Influence of different types of progressive idiopathic scoliosis on static and dynamic postural control, Spine (Phila Pa 1976) 26(9) (2001) 1052-1058. [34] I.A. Kramers-de Quervain, R. Müller, A. Stacoff, D. Grob, E. Stüssi, Gait analysis in patients with idiopathic scoliosis, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 13(5) (2004) 449-456. [35] C. Capaday, The special nature of human walking and its neural control, Trends Neurosci. 25(7) (2002) 370-376. [36] N. Chockalingam, P.H. Dangerfield, A. Rahmatalla, N. Ahmed el, T. Cochrane, Assessment of ground reaction force during scoliotic gait, Eur. Spine J. 13(8) (2004) 750-754. [37] C.G. Schizas, I.A. Kramers-de Quervain, E. Stussi, D. Grob, Gait asymmetries in patients with idiopathic scoliosis using vertical forces measurement only, Eur. Spine J. 7(2) (1998) 95-98. [38] Y.S. Park, Y.T. Lim, K. Koh, J.M. Kim, H.J. Kwon, J.S. Yang, et al., Association of spinal deformity and pelvic tilt with gait asymmetry in adolescent idiopathic scoliosis patients: Investigation of ground reaction force, Clin. Biomech. (Bristol, Avon) 36 (2016) 52-7. [39] J.J. Schimmel, B.E. Groen, V. Weerdesteyn, M. de Kleuver, Adolescent idiopathic scoliosis and spinal fusion do not substantially impact on postural balance, Scoliosis 10 (2015) 18. [40] G. Giakas, V. Baltzopoulos, P.H. Dangerfield, J.C. Dorgan, S. Dalmira, Comparison of gait patterns between healthy and scoliotic patients using time and frequency domain analysis of ground reaction forces, Spine (Phila Pa 1976) 21(19) (1996) 2235-42. [41] P. Mahaudens, J.L. Thonnard, C. Detrembleur, Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis, Spine J 5(4) (2005) 427-33. [42] M.E. Tinetti, M. Speechley, S.F. Ginter, Risk factors for falls among elderly persons living in the community, N. Engl. J. Med. 319(26) (1988) 1701-1707. [43] T.W. Lu, H.L. Chen, S.C. Chen, Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights, Gait Posture 23(4) (2006) 471-479. [44] H.L. Chien, T.W. Lu, M.W. Liu, Control of the motion of the body's center of mass in relation to the center of pressure during high-heeled gait, Gait Posture 38(3) (2013) 391-396. [45] H.L. Chien, T.W. Lu, M.W. Liu, Control of the motion of the body's center of mass in relation to the center of pressure during high-heeled gait, Gait Posture 38(3) (2013) 391-6. [46] T. Sahlstrand, B. Petruson, R. Ortengren, Vestibulospinal reflex activity in patients with adolescent idiopathic scoliosis - postural effects during caloric labyrinthine stimulation recorded by stabilometry, Acta Orthop. Scand. 50(3) (1979) 275-281. [47] M. Yekutiel, G.C. Robin, R. Yarom, Proprioceptive function in children with adolescent idiopathic scoliosis, Spine 6(6) (1981) 560-566. [48] J.P. Pialasse, P. Mercier, M. Descarreaux, M. Simoneau, A procedure to detect abnormal sensorimotor control in adolescents with idiopathic scoliosis, Gait Posture 57 (2017) 124-129. [49] L.-S. Chou, L. Draganich, Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping, 1998. [50] W.A. Sparrow, A.J. Shinkfield, S. Chow, R.K. Begg, Characteristics of gait in stepping over obstacles, Human Movement Science 15(4) (1996) 605-622. [51] W.C. Hsu, M.W. Liu, T.W. Lu, Biomechanical risk factors for tripping during obstacle-Crossing with the trailing limb in patients with type II diabetes mellitus, Gait Posture 45 (2016) 103-109. [52] L.S. Chou, L.F. Draganich, Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping, J. Biomech. 31(8) (1998) 685-691. [53] T.W. Lu, H.L. Chen, S.C. Chen, Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights, Gait Posture 23(4) (2006) 471-9. [54] S.-C. Huang, T.-W. Lu, H.-L. Chen, T.-M. Wang, L.-S. Chou, Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing, 2008. [55] Z. Sawacha, G. Guarneri, G. Cristoferi, A. Guiotto, A. Avogaro, C. Cobelli, Integrated kinematics-kinetics-plantar pressure data analysis: A useful tool for characterizing diabetic foot biomechanics, Gait Posture 36(1) (2012) 20-26. [56] A.A. Gomes, A.N. Onodera, M.E.I. Otuzi, D. Pripas, R.A. Mezzarane, I.C.N. Sacco, Electromyography and kinematic changes of gait cycle at different cadences in diabetic neuropathic individuals, Muscle Nerve 44(2) (2011) 258-268. [57] H. Centomo, N. Termoz, S. Savoie, L. Beliveau, F. Prince, Postural control following a self-initiated reaching task in type 2 diabetic patients and age-matched controls, Gait Posture 25(4) (2007) 509-514. [58] W.C. Hsu, T.W. Lu, M.W. Liu, Lower limb joint position sense in patients with type ii diabetes mellitus, Biomedical Engineering-Applications Basis Communications 21(4) (2009) 271-278. [59] C.S. Andreassen, J. Jakobsen, H. Andersen, Muscle weakness - A progressive late complication in diabetic distal symmetric polyneuropathy, Diabetes 55(3) (2006) 806-812. [60] M.Y. Kuo, S.W. Hong, T.H. Leu, C.C. Kuo, T.W. Lu, J.H. Wang, Kinematic strategies for obstacle-crossing in patients with isolated posterior cruciate ligament deficiency, Gait Posture 57 (2017) 21-27. [61] L.S. Chou, K.R. Kaufman, A.E. Walker-Rabatin, R.H. Brey, J.R. Basford, Dynamic instability during obstacle crossing following traumatic brain injury, Gait Posture 20(3) (2004) 245-254. [62] T.W. Lu, H.L. Chen, T.M. Wang, Obstacle crossing in older adults with medial compartment knee osteoarthritis, Gait Posture 26(4) (2007) 553-559. [63] M.T. Karimi, M. Kavyani, M. Kamali, Balance and gait performance of scoliotic subjects: A review of the literature, J. Back Musculoskelet. Rehabil. 29(3) (2016) 403-415. [64] T. Sahlstrand, R. Ortengren, A. Nachemson, Postural equilibrium in adolescent idiopathic scoliosis, Acta Orthop. Scand. 49(4) (1978) 354-365. [65] N.N. Byl, J.M. Gray, Complex balance reactions in different sensory conditions: adolescents with and without idiopathic scoliosis, J. Orthop. Res. 11(2) (1993) 215-27. [66] D.H. Chow, M.L. Kwok, J.C. Cheng, M.L. Lao, A.D. Holmes, A. Au-Yang, et al., The effect of backpack weight on the standing posture and balance of schoolgirls with adolescent idiopathic scoliosis and normal controls, Gait Posture 24(2) (2006) 173-81. [67] G.C. Gauchard, P. Lascombes, M. Kuhnast, P.P. Perrin, Influence of Different Types of Progressive Idiopathic Scoliosis on Static and Dynamic Postural Control, Spine 26(9) (2001) 1052-1058. [68] L.S. Chou, K.R. Kaufman, R.H. Brey, L.F. Draganich, Motion of the whole body's center of mass when stepping over obstacles of different heights, Gait Posture 13(1) (2001) 17-26. [69] A. Thorstensson, J. Nilsson, H. Carlson, M.R. Zomlefer, Trunk movements in human locomotion, Acta Physiol. Scand. 121(1) (1984) 9-22. [70] C.D. Mackinnon, D.A. Winter, Control of Whole-Body Balance in the Frontal Plane during Human Walking, Journal of Biomechanics 26(6) (1993) 633-644. <Go to ISI>://WOS:A1993LB82000002. [71] Y.C. Pai, J. Patton, Center of mass velocity-position predictions for balance control, Journal of Biomechanics 30(4) (1997) 347-354. <Go to ISI>://WOS:A1997WN13500005. [72] D.A. Winter, Human balance and posture control during standing and walking, Gait Posture 3 (1995). [73] H.J. Lee, L.S. Chou, Detection of gait instability using the center of mass and center of pressure inclination angles, Arch. Phys. Med. Rehabil. 87(4) (2006) 569-75. [74] Y.C. Pai, J. Patton, Center of mass velocity-position predictions for balance control, J. Biomech. 30(4) (1997) 347-54. [75] T.W. Lu, J.J. O'Connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints, J. Biomech. 32(2) (1999) 129-134. [76] T.W. Lu, Geometric and mechanical modelling of the human locomotor system, University of Oxford, Oxford, 1997. [77] H.-L. Chen, T.-W. Lu, Comparisons of the joint moments between leading and trailing limb in young adults when stepping over obstacles, Gait Posture 23(1) (2006) 69-77. [78] G. Wu, P.R. Cavanagh, ISB recommendations for standardization in the reporting of kinematic data, J. Biomech. 28(10) (1995) 1257-1261. [79] T.-W. Lu, H.-L. Chien, H.-L. Chen, Joint loading in the lower extremities during elliptical exercise, Med. Sci. Sports Exerc. 39(9) (2007) 1651-1658. <Go to ISI>://WOS:000249445700028. [80] T.W. Lu, H.L. Chien, H.L. Chen, Joint loading in the lower extremities during elliptical exercise, Med. Sci. Sports Exerc. 39(9) (2007) 1651-1658. [81] Frontmatter, Biomechanics and Motor Control of Human Movement, pp. i-xiv. [82] H.J. Hsieh, T.W. Lu, S.C. Chen, C.M. Chang, C.H. Hung, A new device for in situ static and dynamic calibration of force platforms, Gait Posture 33(4) (2011) 701-705. [83] H.J. Woltring, A fortran package for generalized, cross-validatory spline smoothing and differentiation, Advances in Engineering Software and Workstations 8(2) (1986) 104-113. [84] E. Erdfelder, F. Faul, A. Buchner, GPOWER: A general power analysis program, Behav. Res. Methods Instrum. Comput. 28(1) (1996) 1-11. [85] S. Schmid, D. Studer, C.C. Hasler, J. Romkes, W.R. Taylor, S. Lorenzetti, et al., Quantifying spinal gait kinematics using an enhanced optical motion capture approach in adolescent idiopathic scoliosis, Gait Posture 44 (2016) 231-237. [86] J.H. Yang, S.-W. Suh, P.S. Sung, W.-H. Park, Asymmetrical gait in adolescents with idiopathic scoliosis, Eur. Spine J. 22(11) (2013) 2407-2413. [87] D.H. Chow, M.L. Kwok, A.C. Au-Yang, A.D. Holmes, J.C. Cheng, F.Y. Yao, et al., The effect of load carriage on the gait of girls with adolescent idiopathic scoliosis and normal controls, Med. Eng. Phys. 28(5) (2006) 430-7. [88] P. Mahaudens, C. Detrembleur, M. Mousny, X. Banse, Gait in adolescent idiopathic scoliosis: energy cost analysis, Eur. Spine J. 18(8) (2009) 1160-8. [89] M. Nishida, T. Nagura, N. Fujita, N. Hosogane, T. Tsuji, M. Nakamura, et al., Position of the major curve influences asymmetrical trunk kinematics during gait in adolescent idiopathic scoliosis, Gait Posture 51 (2017) 142-148. [90] A. Daryabor, M. Arazpour, G. Sharifi, M.A. Bani, A. Aboutorabi, N. Golchin, Gait and energy consumption in adolescent idiopathic scoliosis: A literature review, Ann. Phys. Rehabil. Med. 60(2) (2017) 107-116. [91] D. Wong-Chung, J.J.P. Schimmel, M. de Kleuver, N.L.W. Keijsers, Asymmetrical trunk movement during walking improved to normal range at 3 months after corrective posterior spinal fusion in adolescent idiopathic scoliosis, Eur. Spine J. 27(2) (2018) 388-396. [92] S.M. Bruijn, J.H. van Dieen, O.G. Meijer, P.J. Beek, Statistical precision and sensitivity of measures of dynamic gait stability, J. Neurosci. Methods 178(2) (2009) 327-33. [93] H.L. Chen, T.W. Lu, Comparisons of the joint moments between leading and trailing limb in young adults when stepping over obstacles, Gait Posture 23(1) (2006) 69-77. [94] S.C. Chen, H.J. Hsieh, T.W. Lu, C.H. Tseng, A method for estimating subject-specific body segment inertial parameters in human movement analysis, Gait Posture 33(4) (2011) 695-700. [95] S.W. Hong, T.H. Leu, T.M. Wang, J.D. Li, W.P. Ho, T.W. Lu, Control of body's center of mass motion relative to center of pressure during uphill walking in the elderly, Gait Posture 42(4) (2015) 523-528. [96] E.S. Grood, W.J. Suntay, A joint coordinate system for the clinical description of three-dimensional motions: application to the knee, J. Biomech. Eng. 105(2) (1983) 136-144. [97] S. Ghoussayni, C. Stevens, S. Durham, D. Ewins, Assessment and validation of a simple automated method for the detection of gait events and intervals, Gait Posture 20(3) (2004) 266-272. [98] J.S. Chern, C.C. Kao, P.L. Lai, C.W. Lung, W.J. Chen, Severity of spine malalignment on center of pressure progression during level walking in subjects with adolescent idiopathic scoliosis, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014 (2014) 5888-91. [99] D.C. de Abreu, M.M. Gomes, H.A. de Santiago, C.F. Herrero, M.A. Porto, H.L. Defino, What is the influence of surgical treatment of adolescent idiopathic scoliosis on postural control?, Gait Posture 36(3) (2012) 586-90. [100] G.A. Stylianides, G. Dalleau, M. Begon, C.H. Rivard, P. Allard, Pelvic morphology, body posture and standing balance characteristics of adolescent able-bodied and idiopathic scoliosis girls, PLoS One 8(7) (2013) e70205. [101] G. Dalleau, M. Damavandi, P. Leroyer, C. Verkindt, C.H. Rivard, P. Allard, Horizontal body and trunk center of mass offset and standing balance in scoliotic girls, Eur. Spine J. 20(1) (2011) 123-8. [102] M. Syczewska, A. Łukaszewska, B. Górak, K. Graff, Changes in gait pattern in patients with scoliosis, 2006. [103] M. Damavandi, G. Dalleau, G. Stylianides, C.-H. Rivard, P. Allard, Head and trunk mass and center of mass position estimations in able-bodied and scoliotic girls, Med. Eng. Phys. 35(11) (2013) 1607-1612. [104] S.A. England, K.P. Granata, The influence of gait speed on local dynamic stability of walking, Gait Posture 25(2) (2007) 172-8. [105] V. Wank, U. Frick, D. Schmidtbleicher, Kinematics and electromyography of lower limb muscles in overground and treadmill running, Int. J. Sports Med. 19(7) (1998) 455-61. [106] V. Sarwahi, O. Boachie-Adjei, S.I. Backus, G. Taira, Characterization of gait function in patients with postsurgical sagittal (flatback) deformity: a prospective study of 21 patients, Spine (Phila Pa 1976) 27(21) (2002) 2328-37. [107] J.C. Paul, A. Patel, K. Bianco, E. Godwin, Q. Naziri, S. Maier, et al., Gait stability improvement after fusion surgery for adolescent idiopathic scoliosis is influenced by corrective measures in coronal and sagittal planes, Gait Posture 40(4) (2014) 510-5. [108] R.L. Barrack, T.S. Whitecloud, 3rd, S.W. Burke, S.D. Cook, A.F. Harding, Proprioception in idiopathic scoliosis, Spine (Phila Pa 1976) 9(7) (1984) 681-685. [109] K.-W. Wu, J.-D. Li, H.-P. Huang, Y.-H. Liu, T.-M. Wang, Y.-T. Ho, et al., Bilateral asymmetry in kinematic strategies for obstacle-crossing in adolescents with severe idiopathic thoracic scoliosis, Gait Posture 71 (2019) 211-218. [110] K.W. Wu, T.M. Wang, C.C. Hu, S.W. Hong, P.A. Lee, T.W. Lu, Postural adjustments in adolescent idiopathic thoracic scoliosis during walking, Gait Posture 68 (2018) 423-429. [111] Wu KW, Li JD, Huang HP, Liu YH, Wang TM, Ho YT, Lu TW, Bilateral asymmetry in kinematic strategies for obstacle-crossing in adolescents with severe idiopathic thoracic scoliosis, Gait Posture (In press). [112] A.J. Danielsson, K. Romberg, A.L. Nachemson, Spinal range of motion, muscle endurance, and back pain and function at least 20 years after fusion or brace treatment for adolescent idiopathic scoliosis: a case-control study, Spine (Phila Pa 1976) 31(3) (2006) 275-83. [113] H.F.V. Riddle, R. Roaf, Muscle imbalance in the causation of scoliosis, The Lancet 265(6877) (1955) 1245-1247. [114] A.E. Patla, Understanding the roles of vision in the control of human locomotion, Gait Posture 5(1) (1997) 54-69. [115] A.E. Patla, S.D. Prentice, L.T. Gobbi, Visual Control of Obstacle Avoidance During Locomotion: Strategies in Young Children, Young and Older Adults, in: A.-M. Ferrandez, N. Teasdale (Eds.), Advances in Psychology, North-Holland1996, pp. 257-277. [116] G. Yagci, Y. Yakut, E. Simsek, The effects of exercise on perception of verticality in adolescent idiopathic scoliosis, Physiotherapy theory and practice 34(8) (2018) 579-588. [117] W. Keessen, A. Crowe, M. Hearn, Proprioceptive accuracy in idiopathic scoliosis, Spine (Phila Pa 1976) 17(2) (1992) 149-155. [118] A.L. Simon, B. Ilharreborde, P. Souchet, K.R. Kaufman, Dynamic balance assessment during gait in spinal pathologies - a literature review, Orthop. Traumatol. Surg. Res. 101(2) (2015) 235-46. [119] I.A. Kramers-de Quervain, R. Muller, A. Stacoff, D. Grob, E. Stussi, Gait analysis in patients with idiopathic scoliosis, Eur. Spine J. 13(5) (2004) 449-56. [120] L.S. Chou, K.R. Kaufman, M.E. Hahn, R.H. Brey, Medio-lateral motion of the center of mass during obstacle crossing distinguishes elderly individuals with imbalance, Gait Posture 18(3) (2003) 125-33. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72532 | - |
| dc.description.abstract | 青少年原發性脊椎側彎為青少年時期最常見的脊椎側彎。青少年原發性脊椎側彎為矢狀面、額狀面和橫切面三維的變形,患者常伴隨著本體感覺和感覺統合的問題,此綜合神經肌肉骨骼系統的問題可能會導致日常生活功能性動作控制不佳,行走較不穩定甚至是改變動作控制策略。走路為人體神經肌肉骨骼系統以最低層級之自主認知控制下,整合失狀面與額狀面之控制所達成之動態平衡,臨床亦常使用步態評估個人動作控制以及肢段調節能力的方法。然而,在日常生活中,除了平地行走,因障礙物而絆倒為日常生活環境跌倒的危險因子之一,因此,跨越障礙物為一需要高度協調能力的動作,且需要精準的動作控制以及維持全身的平衡,系統性整合下動態平衡之能力以成功且有效的跨越。有鑒於此,過去研究經常透過人體質量中心相對於足底壓力中心之傾角與傾角變化速率描述人體平衡控制,可用於評估動態穩定性之指標參數。因此,本研究以傾角與傾角變化速率比較走路與跨越障礙物平衡控制,評估脊椎側彎對人體肢段協調及平衡控制之影響。過去文獻對於原發性脊椎側彎患者平地走路研究結果一致性低,且對於患者和健康受試者平衡之差異性尚未有一致看法,更缺乏文獻針對跨越障礙物下肢運動學和平衡控制的影響。另一方面,過去研究指出,脊椎側彎亦可能影響身體質量分布,因此脊椎側彎對人體平衡控制之影響亦尚待釐清。
本研究收取青少年原發性脊椎側彎患者和年紀、性別和身體質量指數相仿的健康青少年受試者,分別以自選行走速度於測力板步道執行平地行走和跨越障礙物試驗,其中跨越障礙物包含10%、20%和30%腿長三個高度。其結果顯示,不論是靜態站立、或是平地行走脊椎的側彎會造成患者軀幹、骨盆以及下肢姿勢上的調整,且患者凸側和凹側之間亦有所差異,易造成患者在重心轉換時平衡控制較差。根據跨越障礙物結果顯示,患者於凹側腳跨越障礙物,因牽涉較多的關節改變,導致縮短跨越腳和障礙物之間的距離,絆倒的風險因而上升,不僅絆倒風險增加,基於人體質量中心相對於足底壓力中心之傾角與傾角變化速率之平衡控制發現,脊椎側彎影響平衡控制導致患者跨越障礙物以較不穩定的控制策略,患者以較差的平衡控制與協調模式行走於平地與跨越障礙物。基於本研究之發現,脊椎側彎主要發生在額狀面,但無論是姿勢的調整,協調和平衡控制皆會造成全身性的影響。因此,了解原發性脊椎側彎患者對於姿勢、平衡控制、協調與動態穩定性之影響,有助於臨床人員對疾病判斷和未來治療成效的評估以降低因疾病所帶來的風險。 | zh_TW |
| dc.description.abstract | Adolescent idiopathic scoliosis (AIS) is the most common three-dimensional spinal deformity pathology during adolescence, often accompanied with sensory integration and proprioception problems, which may lead to postural control problems with compromised postural stability and altered end-point control during functional activities. Walking ability is critical for an independent life. The integrated performance of joint movements is reflected in the stability of one’s position control ability. Among the activities of daily living, negotiating obstacles places more neuromechanical demand on the locomotor system than level walking does, and has been identified as an environmental risk factor for falling. A safe and efficient obstacle-crossing task requires precise end-point (foot) position control while maintaining body balance through highly coordinated joint movements of the stance and swing limbs. Describing the position and velocity of the body’s center of mass (COM) with respect to the center of pressure (COP), in terms of COM-COP inclination angles (IAs) and their rate of change (RCIA), provides useful information to investigate dynamic balance control during movements. Identifying the postural adjustments or changes for different phases and events is needed for developing programs to improve the AIS gait, but such information has been limited. Therefore, the purposes of the current dissertation were to fill the gap via three-dimensional motion analysis of quiet standing, level walking and obstacle crossing in patients with AIS; to identify the effects of AIS on the end-point control and on angular kinematics of the trunk and pelvis-leg apparatus during level walking and obstacle-crossing for both the concave- and convex-side limb leading; to identify the effects of Lenke 1 AIS on whole-body balance control during obstacle-crossing.
Adolescents with AIS and sex-, age- and BMI-matched healthy controls participated in the current study with informed written consent. The kinematic and kinetic changes between the trunk, pelvis, and lower limb segments, and toe-obstacle clearances at different gait events were measured during quiet standing, level walking and obstacle crossing. Each level walked and crossed obstacles of 3 heights with either the concave- (AIS-A) or convex-side (AIS-V) limb leading. The current findings suggested that postural adjustments involving the trunk, pelvis and lower limb segments were needed in severe thoracic AIS during both quiet standing and level walking, and differed between concave and convex sides at different key gait events during level walking. Patients with AIS adopted different crossing strategies. During AIS-A, additional kinematic modifications were observed, with significantly decreased leading toe-clearance, increasing the risk of tripping. The patients with Lenke 1 thoracic AIS were also found to cross obstacles with altered, compromised COM-COP control in both sagittal and frontal planes when compared to healthy controls. The current findings suggested that although scoliotic spinal deformity occurred mainly in the frontal plane, postural adjustments in all three planes were present at key events during level walking with associated joint loading changes in patients with severe thoracic AIS. With the concave-side limb leading, more joint kinematic modifications with reduced toe-clearance were found when compared to those during the convex-side limb leading, suggesting an increased risk of tripping. Monitoring of such adjustments and the associated joint kinematic changes will be helpful for assessing the disease and treatment outcomes. The results also suggest that the thoracic spinal deformity in Lenke 1 AIS affects the whole-body balance control during obstacle-crossing, which should be monitored for signs of increased risk of loss of balance in the management of such patient groups. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:00:26Z (GMT). No. of bitstreams: 1 ntu-108-D00548011-1.pdf: 3773407 bytes, checksum: 43a14a28a6b6b01b4b7d25deea853895 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT ii
摘要 iii ABSTRACT v TABLE OF CONTENTS viii LIST OF TABLES xi LIST OF FIGURES xiv ABBREVIATIONS xviii CHAPTER 1. INTRODUCTION 1 1.1 Adolescent idiopathic Scoliosis 1 1.2 Level walking 6 1.2.1 Gait Mechanics of Level Walking in AIS 10 1.2.2 Limitation of Previous Studies 10 1.3 Obstacle crossing 11 1.3.1 Gait Analysis of Obstacle Crossing 14 1.4 Balance Control and Dynamic Stability 16 1.4.1 Balance Control 16 1.5 Aims and Scope of the Dissertation 18 CHAPTER 2. MATERIALS AND METHODS 20 2.1 Subjects 20 2.2 Experimental Setting and Instruments 22 2.4 Determination of Gait Events and Phases 29 2.5 Determination of Crossing Events and Phases 30 2.6 Data Analysis 31 CHAPTER 3. POSTURAL ADJUSTMENTS IN ADOLESCENT IDIOPATHIC THORACIC SCOLIOSIS DURING WALKING 46 3.1 Introduction 46 3.2 Materials and Methods 48 3.3 Results 51 3.3.1 Posture during quiet standing and temporal-spatial parameters during walking 51 3.3.2 Kinematics 57 3.3.3 Kinetics 63 3.4 Discussion 65 CHAPTER 4. WHOLE BODY BALANCE CONTROL AND ITS ASSOCIATION WITH COBB ANGLES IN THORACIC ADOLESCENT IDIOPATHIC SCOLIOSIS DURING LEVEL WALKING 69 4.1 Introduction 69 4.2 Materials and Methods 71 4.3 Results 74 4.4 Discussion 83 CHAPTER 5. BILATERAL ASYMMETRY IN KINEMATIC STRATEGIES FOR OBSTACLE-CROSSING IN ADOLESCENTS WITH SEVERE IDIOPATHIC THORACIC SCOLIOSIS 87 5.1 Introduction 87 5.2 Materials and Methods 88 5.2.1 Subjects 88 5.2.2 Gait experiments 89 5.2.3 Calculation of dependent variables 89 5.3 Results 91 5.4 Discussion 104 CHAPTER 6. ALTERED BALANCE CONTROL IN THORACIC ADOLESCENT IDIOPATHIC SCOLIOSIS DURING OBSTRUCTED GAIT 108 6.1 Introduction 108 6.2 Materials and Methods 110 6.2.1 Subjects 110 6.2.2 Gait experiment 111 6.2.3 Calculation of dependent variables 111 6.3 Results 113 6.4 Discussion 122 CHAPTER 7. CONCLUSIONS AND SUGGESTIONS 125 7.1 Conclusions 125 7.1.1 Postural Adjustments in Adolescent Idiopathic Thoracic Scoliosis During Walking 125 7.1.2 Whole Body Balance Control and Its Association with Cobb Angles in Thoracic Adolescent Idiopathic Scoliosis During Level Walking 126 7.1.3 Bilateral Asymmetry in Kinematic Strategies for Obstacle-Crossing in Adolescents with Severe Idiopathic Thoracic Scoliosis 127 7.1.4 Altered Balance Control in Thoracic Adolescent Idiopathic Scoliosis During Obstructed Gait 128 7.2 Suggestions and Future Studies 129 REFERENCES 131 | |
| dc.language.iso | en | |
| dc.subject | 壓力中心 | zh_TW |
| dc.subject | 運動學 | zh_TW |
| dc.subject | 動作分析 | zh_TW |
| dc.subject | 平衡控制 | zh_TW |
| dc.subject | 步態 | zh_TW |
| dc.subject | 質量中心 | zh_TW |
| dc.subject | 青少年原發性脊椎側彎 | zh_TW |
| dc.subject | 障礙物 | zh_TW |
| dc.subject | Kinematics | en |
| dc.subject | Balance Control | en |
| dc.subject | Gait | en |
| dc.subject | Center of Mass | en |
| dc.subject | Center of Pressure | en |
| dc.subject | obstacle | en |
| dc.subject | Adolescent idiopathic scoliosis (AIS) | en |
| dc.subject | Motion analysis | en |
| dc.title | 胸椎側彎青少年行走與跨越障礙時平衡控制與運動學策略之研究 | zh_TW |
| dc.title | Balance Control and Kinematic Strategies in Thoracic Adolescent Idiopathic Scoliosis During Level Walking and Obstacle-Crossing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 王廷明(Ting-Ming Wang) | |
| dc.contributor.oralexamcommittee | 王至弘(Jyh-Horng Wang),陳祥和(Hsiang-Ho Chen),陳文斌(Weng-Pin Chen) | |
| dc.subject.keyword | 青少年原發性脊椎側彎,運動學,動作分析,平衡控制,步態,質量中心,壓力中心,障礙物, | zh_TW |
| dc.subject.keyword | Adolescent idiopathic scoliosis (AIS),Kinematics,Motion analysis,Balance Control,Gait,Center of Mass,Center of Pressure,obstacle, | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU201901070 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
