Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72512
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成
dc.contributor.authorZih-Ci Suen
dc.contributor.author蘇子淇zh_TW
dc.date.accessioned2021-06-17T07:00:09Z-
dc.date.available2024-08-07
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citation[1] 盧俊彰 ,林唯耕 ,'成型熱管真空度量測理論與實驗系統之建立 ,'先進工程學刊 ,vol. 4,no. 4,pp. 331-335, 2009.
[2] Potash Jr, M., and P. C. Wayner Jr. 'Evaporation from a two-dimensional extended meniscus.' International Journal of Heat and Mass Transfer , vol. 15, no. 10, pp. 1851-1863, 1972.
[3] Thomson, James. 'XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors.' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science , vol. 10, no. 67, pp. 330-333, 1855.
[4] V. Starov and I. Ivanov, Fluid mechanics of surfactant and polymer solutions. Springer, 2004.
[5] Dunn, G. J., et al. 'A mathematical model for the evaporation of a thin sessile liquid droplet: Comparison between experiment and theory.' Colloids and Surfaces A: Physicochemical and Engineering Aspects , vol. 323, no. 1-3, pp. 50-55, 2008.
[6] Di Francescantonio, Nicola, Raffaele Savino, and Yoshiyuki Abe. 'New alcohol solutions for heat pipes: Marangoni effect and heat transfer enhancement.' International Journal of Heat and Mass Transfer , vol. 51, no. 25-26, pp. 6199-6207, 2008.
[7] McGillis, W. R., and V. P. Carey. 'On the role of Marangoni effects on the critical heat flux for pool boiling of binary mixtures.' Journal of heat transfer , vol. 118, no. 1, pp. 103-109, 1996.
[8] Zhang, Nengli, and David F. Chao. 'Models for enhanced boiling heat transfer by unusual Marangoni effects under microgravity conditions.' Internationalcommunications in heat and mass transfer , vol. 26, no. 8, pp. 1081-1090, 1999.
[9] Zhang, Nengli. 'Innovative heat pipe systems using a new working fluid.' International communications in heat and mass transfer , vol. 28, no. 8, pp. 1025-1033, 2001. [10] Hu, Hua, and Ronald G. Larson. 'Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet.' Langmuir , vol. 21, no. 9, pp. 3972-3980, 2005.
[11] Savino, Raffaele, et al. 'Heat pipes with binary mixtures and inverse Marangoni effects for microgravity applications.' Acta Astronautica , vol. 61, no. 1-6, pp. 16-26, 2007.
[12] Savino, Raffaele, Anselmo Cecere, and Roberto Di Paola. 'Surface tension-driven flow in wickless heat pipes with self-rewetting fluids.' International Journal of Heat and Fluid Flow, vol. 30, no. 2, pp. 380-388, 2009.
[13] Morovati, Mostafa, et al. 'Enhancement of pool boiling and critical heat flux in self-rewetting fluids at above atmospheric pressures.' ASME/JSME 2011 8th Thermal Engineering Joint Conference. American Society of Mechanical Engineers, 2011.
[14] Liou, Jhan-Hong, et al. 'Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes.' International Journal of Heat and Mass Transfer , vol. 53, no. 7-8, pp. 1498-1506, 2010.
[15] Wong, Shwin-Chung, and Yu-Chung Lin. 'Effect of copper surface wettability on the evaporation performance: Tests in a flat-plate heat pipe with visualization.' International journal of heat and mass transfer , vol. 54, no. 17-18, pp. 3921-3926, 2011.
[16] Wong, Shwin-Chung, Yu-Chung Lin, and Jhan-Hong Liou. 'Visualization and evaporator resistance measurement in heat pipes charged with water, methanol oracetone.' International Journal of Thermal Sciences , vol. 52, pp. 154-160, 2012.
[17] G. P. Peterson, 'An introduction to heat pipes: modeling, testing, and applications,' 1994.
[18] A. Faghri, Heat pipe science and technology. Global Digital Press, 1995.
[19] Kim, B. H., and G. P. Peterson. 'Analysis of the critical Weber number at the onset of liquid entrainment in capillary-driven heat pipes.' International journal of heat and mass transfer , vol. 38, no. 8, pp. 1427-1442, 1995.
[20] C. J. Oshman, 'Development, fabrication, and experimental study of flat polymer micro heat pipes,' 2012.
[21] P. D. Dunn and D. Reay, Heat pipes. Elsevier, 2012.
[22] A. F. J. I. Mills, Concord, MA, 'Heat and Mass Transfer, Richard D. Irwin,' 1995.
[23] 李西兵 ,郭建華 ,王世剛 ,石志民 ,'燒結式微熱管的工質灌注、抽 真空與封接 ,'真空科學與技術學報 , 2012.
[24] Attia, Ahmed AA, and Baiumy T. El-Assal. 'Experimental investigation of vapor chamber with different working fluids at different charge ratios.' Heat Pipe Science and Technology, An International Journal , vol. 3, no. 3, pp. 289-297, 2012.
[25] Vochten, R., Georges Petre, and R. Defay. 'Study of the heat of reversible adsorption at the air-solution interface. I. Thermodynamical calculation of the heat of reversible adsorption of nonionic surfactants.' Journal of Colloid and Interface Science, vol. 42, no. 2, pp. 320-327, 1973.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72512-
dc.description.abstract現今的電子產品持續朝著輕薄與多功能的方向演進,使得產品內 部 CPU的運作時脈不斷提升,引發了許多高發熱量的問題,再者根據研究指出,電子產品的損壞原因有 55%來自於內部過高的溫度,其次才是人為與潮濕的損壞,由此可知,散熱對科技的發展扮演了不可或缺的角色。
但在追求產品輕薄化的同時,勢必會影響均溫板內部的流體質量,較少的流體會造成均溫板無法承受較高的瓦數,所以本實驗的研究目的在於,利用二元混合流體的馬蘭哥尼效應,加強均溫板毛細結構內冷端往熱端的流動,延緩乾涸現象發生,提升臨界熱傳量。為了方便觀察均溫板內部乾涸現象,本實驗也架設了可視化裝置,可以透過 PC塑膠上蓋板清楚觀測內部的相變化與乾涸情形。
實驗流體方面,採用純水、正丁醇、正戊醇、正己醇這四種 流體,改變濃度方面,選用各醇類的最大溶解度,正丁醇採用 2~6%;正戊醇採用 1~3%;正己醇採用 0.6%,改變以上的流體與濃度,並以可視化熱測試系統量測均溫板熱阻以及拍攝內部照片。
研究結果顯示,水的臨界瓦數為 7W,最低熱阻為 3.146(°C/W);正丁醇方面以 6%的濃度效果最好,臨界瓦數為 11W,最低熱阻為2.441(°C/W);正戊醇方面以 3%的濃度效果最好,臨界瓦數為 9W,最低熱阻為 2.596(°C/W);正己醇方面臨界瓦數為 7W,最低熱阻為 2.49(°C/W)。從以上結果可知,二元混合流 體相較於水,臨界瓦數皆有顯著提升,熱阻也比水來的低。其中,又以 6%正丁醇的效果最好,臨界瓦數比水增加了 57%,對於薄型熱板來說有最佳的熱傳表現。
zh_TW
dc.description.abstractToday’s electronic products continue to evolve toward thinness and versatility. The development makes the product’s internal CPU generate more high heat. According to research, 55% of the damage of electronic products comes from the internal high temperature, the following are man-made and wet damage. It seen that heat dissipation plays an indispensable role in the development of technology.
However, in pursuit of product thinning,the fluid quality must be decreased. The fluid quality is too less to load higher wattages. Therefore, the purpose of this experiment is using the Marangoni effect of the binary mixed fluids to enhance the flow from the condenser zone to the evaporator zone, delaying the occurrence of dry-out and increasing the critical heat transfer. In order to observe the internal dry-out phenomenon of the vapor chamber, we set up a visualized device, which can clearly observe the internal phase change and dry-out through the PC plastic upper cover.
In terms of experimental fluids, we use pure water, 1-Butanol, 1-Pentanol and 1-Hexanol. In terms of concentration, the maximum solubility of each alcohol is selected. The concentration of 1-Butanol is ranging from 2~ The concentration of 1-Pentanol is ranging from 1~ The concentration of 1-Hexanol is only used in 0.6%. Changing the aboved fluids and concentration, and using the visualized heat device to measure the thermal resistance and take the internal photos.
The results show that the critical wattage of pure water is 7W and the lowest thermal resistance is 3.146(°C/ For 1-Butanol, the 6% butanol aqueous solution has the best effect, the critical wattage is 11W and the lowest thermal resistance is 2.441(°C/ For 1-Pentanol, the 3% pentanol aqueous solution has the best effect, the critical wattage is 9W and the lowest thermal resistance is 2.596(°C/ For 1-Hexanol, the critical wattage is 7W and the lowest thermal resistance is 2.49(° C/W). From the aboved results,compared with pure water, the binary mixed working fluid has a significant increase in the critical wattage and has lower thermal resistance. Among binary mixed fluids, the 6% butanol aqueous solution has the best effect, the critical wattage is increased by 57% than pure water. Therefore, the 6% butanol aqueous solution is most effective on thin vapor chamber.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:00:09Z (GMT). No. of bitstreams: 1
ntu-108-R06543076-1.pdf: 6167825 bytes, checksum: 070878d358196e87adc206f4b05abf6b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xv
第一章 緒論 1
1.1研究動機 1
1.2熱管背景發展 2
1.2.1熱管熱傳機制 3
1.2.2馬蘭哥尼效應 5
1.2.3二元混合工作流體 8
1.3文獻回顧 9
1.3.1二元混合流體之強化熱傳研究 9
1.3.2均溫板熱阻量測、可視化研究 12
1.4研究目的 15
1.5研究成果 15
第二章 熱管原理與理論分析 16
2.1熱管有效長度 16
2.2熱管毛細結構 17
2.3熱管性能極限 17
2.3.1毛細極限 18
2.3.2黏滯極限 23
2.3.3沸騰極限 23
2.3.4飛濺極限 24
2.4熱阻分析 24
2.5工作流體選用 26
第三章 實驗設備與實驗方法 27
3.1實驗材料 27
3.1.1均溫板材料 27
3.1.2實驗化學藥品 27
3.2銅網焊接流程 28
3.3實驗設備與架設 30
3.3.1實驗設備 30
3.3.2可視化系統架設 33
3.4工作流體填充 36
3.5實驗步驟與性能評估 39
3.5.1實驗步驟 39
3.5.2性能評估 40
3.6實驗設計與方法 41
3.6.1流體選用 41
3.6.2改變二元混合流體濃度 54
第四章 結果與討論 55
4.1二元混合流體濃度對薄型均溫板的熱傳影響 55
4.1.1純水 55
4.1.2 2~6%正丁醇二元混合流體 56
4.1.3 1~3%正戊醇二元混合流體 66
4.2改變二元混合流體成分對薄型均溫板的熱傳影響 73
4.2.1 6%正丁醇二元混合流體 73
4.2.2 3%正戊醇二元混合流體 74
4.2.3 0.6%正己醇二元混合流體 75
4.2.4不同成分二元混合流體比較 78
第五章 結論與未來展望 79
5.1結論 79
5.2未來展望 80
參考文獻 81
dc.language.isozh-TW
dc.subject均溫板zh_TW
dc.subject馬蘭哥尼效應zh_TW
dc.subject二元混合流體zh_TW
dc.subject可視化熱測試zh_TW
dc.subjectVapor chamberen
dc.subjectBinary mixed working fluiden
dc.subjectMarangoni effecten
dc.subjectVisualized heat testingen
dc.title二元混合流體應用於增益薄型均溫板蒸發熱傳之可視化研究zh_TW
dc.titleVisualized of Improving the Evaporative Heat Transfer of a Thin Vapor Chamber with Binary Mixture Working Fluidsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor朱錦洲
dc.contributor.oralexamcommittee李青峻,黃世霖,宮春斐
dc.subject.keyword均溫板,二元混合流體,馬蘭哥尼效應,可視化熱測試,zh_TW
dc.subject.keywordVapor chamber,Binary mixed working fluid,Marangoni effect,Visualized heat testing,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201902168
dc.rights.note有償授權
dc.date.accepted2019-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved