Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7250
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴育英(Yu-Ying Lai)
dc.contributor.authorHao-Ting Leeen
dc.contributor.author李浩廷zh_TW
dc.date.accessioned2021-05-19T17:40:36Z-
dc.date.available2024-08-14
dc.date.available2021-05-19T17:40:36Z-
dc.date.copyright2019-08-14
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citation1.Babu, V. J.; Vempati, S.; Uyar, T.; Ramakrishna, S., Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Physical Chemistry Chemical Physics 2015, 17 (5), 2960-2986.
2.Liu, L.; Wu, X.; Wang, L.; Xu, X.; Gan, L.; Si, Z.; Li, J.; Zhang, Q.; Liu, Y.; Zhao, Y.; Ran, R.; Wu, X.; Weng, D.; Kang, F., Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Communications Chemistry 2019, 2 (1), 18.
3.Liu, A. Y.; Cohen, M. L., Structural properties and electronic structure of low-compressibility materials: β-Si3C4 and hypothetical β-C3N4. Physical Review B 1990, 41 (15), 10727-10734.
4.Mansor, N.; Miller, T. S.; Dedigama, I.; Jorge, A. B.; Jia, J.; Brázdová, V.; Mattevi, C.; Gibbs, C.; Hodgson, D.; Shearing, P. R.; Howard, C. A.; Corà, F.; Shaffer, M.; Brett, D. J. L.; McMillan, P. F., Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers. Electrochimica Acta 2016, 222, 44-57.
5.Wu, M.; Wang, Q.; Sun, Q.; Jena, P., Functionalized Graphitic Carbon Nitride for Efficient Energy Storage. The Journal of Physical Chemistry C 2013, 117 (12), 6055-6059.
6.Kuhn, P.; Thomas, A.; Antonietti, M., Toward Tailorable Porous Organic Polymer Networks: A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles. Macromolecules 2009, 42 (1), 319-326.
7.Han, Q.; Wang, B.; Gao, J.; Cheng, Z.; Zhao, Y.; Zhang, Z.; Qu, L., Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution. ACS Nano 2016, 10 (2), 2745-2751.
8.Dou, H.; Long, D.; Zheng, S.; Zhang, Y., A facile approach to synthesize graphitic carbon nitride microwires for enhanced photocatalytic H2 evolution from water splitting under full solar spectrum. Catalysis Science Technology 2018, 8 (14), 3599-3609.
9.Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P. M., Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Advanced Materials 2013, 25 (17), 2452-2456.
10.Wang, W.; Yu, J. C.; Shen, Z.; Chan, D. K. L.; Gu, T., g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chemical Communications 2014, 50 (70), 10148-10150.
11.Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347 (6225), 970.
12.Chen, Z.; Fan, T.-T.; Yu, X.; Wu, Q.-L.; Zhu, Q.-H.; Zhang, L.-Z.; Li, J.-H.; Fang, W.-P.; Yi, X.-D., Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution. Journal of Materials Chemistry A 2018, 6 (31), 15310-15319.
13.Yan, H.; Huang, Y., Polymer composites of carbon nitride and poly(3-hexylthiophene) to achieve enhanced hydrogen production from water under visible light. Chemical Communications 2011, 47 (14), 4168-4170.
14.Zhang, X.; Peng, B.; Zhang, S.; Peng, T., Robust Wide Visible-Light-Responsive Photoactivity for H2 Production over a Polymer/Polymer Heterojunction Photocatalyst: The Significance of Sacrificial Reagent. ACS Sustainable Chemistry Engineering 2015, 3 (7), 1501-1509.
15.Sui, Y.; Liu, J.; Zhang, Y.; Tian, X.; Chen, W., Dispersed conductive polymer nanoparticles on graphitic carbon nitride for enhanced solar-driven hydrogen evolution from pure water. Nanoscale 2013, 5 (19), 9150-9155.
16.Compton, O. C.; Osterloh, F. E., Niobate Nanosheets as Catalysts for Photochemical Water Splitting into Hydrogen and Hydrogen Peroxide. The Journal of Physical Chemistry C 2009, 113 (1), 479-485.
17.Jäckle, S.; Liebhaber, M.; Gersmann, C.; Mews, M.; Jäger, K.; Christiansen, S.; Lips, K., Potential of PEDOT:PSS as a hole selective front contact for silicon heterojunction solar cells. Scientific Reports 2017, 7 (1), 2170.
18.Xing, Z.; Chen, Z.; Zong, X.; Wang, L., A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production. Chemical Communications 2014, 50 (51), 6762-6764.
19.Ouyang, J.; Chu, C. W.; Chen, F. C.; Xu, Q.; Yang, Y., High-Conductivity Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices. Advanced Functional Materials 2005, 15 (2), 203-208.
20.He, F.; Chen, G.; Yu, Y.; Hao, S.; Zhou, Y.; Zheng, Y., Facile Approach to Synthesize g-PAN/g-C3N4 Composites with Enhanced Photocatalytic H2 Evolution Activity. ACS Applied Materials Interfaces 2014, 6 (10), 7171-7179.
21.Chen, J.; Dong, C.-L.; Zhao, D.; Huang, Y.-C.; Wang, X.; Samad, L.; Dang, L.; Shearer, M.; Shen, S.; Guo, L., Molecular Design of Polymer Heterojunctions for Efficient Solar–Hydrogen Conversion. Advanced Materials 2017, 29 (21), 1606198.
22.Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V., A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chemical Science 2014, 5 (7), 2789-2793.
23.Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V., A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nature Communications 2015, 6, 8508.
24.Kuhn, P.; Antonietti, M.; Thomas, A., Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie International Edition 2008, 47 (18), 3450-3453.
25.Schwinghammer, K.; Hug, S.; Mesch, M. B.; Senker, J.; Lotsch, B. V., Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environmental Science 2015, 8 (11), 3345-3353.
26.Kuecken, S.; Acharjya, A.; Zhi, L.; Schwarze, M.; Schomäcker, R.; Thomas, A., Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications 2017, 53 (43), 5854-5857.
27.Meier, C. B.; Sprick, R. S.; Monti, A.; Guiglion, P.; Lee, J.-S. M.; Zwijnenburg, M. A.; Cooper, A. I., Structure-property relationships for covalent triazine-based frameworks: The effect of spacer length on photocatalytic hydrogen evolution from water. Polymer 2017, 126, 283-290.
28.Huang, W.; He, Q.; Hu, Y.; Li, Y., Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie 2019, 0 (0).
29.Schwab, M. G.; Hamburger, M.; Feng, X.; Shu, J.; Spiess, H. W.; Wang, X.; Antonietti, M.; Müllen, K., Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chemical Communications 2010, 46 (47), 8932-8934.
30.Park, J. H.; Ko, K. C.; Park, N.; Shin, H.-W.; Kim, E.; Kang, N.; Hong Ko, J.; Lee, S. M.; Kim, H. J.; Ahn, T. K.; Lee, J. Y.; Son, S. U., Microporous organic nanorods with electronic push–pull skeletons for visible light-induced hydrogen evolution from water. Journal of Materials Chemistry A 2014, 2 (21), 7656-7661.
31.Yanagida, S.; Kabumoto, A.; Mizumoto, K.; Pac, C.; Yoshino, K., Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. Journal of the Chemical Society, Chemical Communications 1985, (8), 474-475.
32.Sachs, M.; Sprick, R. S.; Pearce, D.; Hillman, S. A. J.; Monti, A.; Guilbert, A. A. Y.; Brownbill, N. J.; Dimitrov, S.; Shi, X.; Blanc, F.; Zwijnenburg, M. A.; Nelson, J.; Durrant, J. R.; Cooper, A. I., Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nature Communications 2018, 9 (1), 4968.
33.Yang, C.; Ma, B. C.; Zhang, L.; Lin, S.; Ghasimi, S.; Landfester, K.; Zhang, K. A. I.; Wang, X., Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis. Angewandte Chemie International Edition 2016, 55 (32), 9202-9206.
34.Sprick, R. S.; Jiang, J.-X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I., Tunable Organic Photocatalysts for Visible-Light-Driven Hydrogen Evolution. Journal of the American Chemical Society 2015, 137 (9), 3265-3270.
35.Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I., Visible-Light-Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. Angewandte Chemie International Edition 2016, 55 (5), 1792-1796.
36.Wang, L.; Fernández-Terán, R.; Zhang, L.; Fernandes, D. L. A.; Tian, L.; Chen, H.; Tian, H., Organic Polymer Dots as Photocatalysts for Visible Light-Driven Hydrogen Generation. Angewandte Chemie International Edition 2016, 55 (40), 12306-12310.
37.Tseng, P.-J.; Chang, C.-L.; Chan, Y.-H.; Ting, L.-Y.; Chen, P.-Y.; Liao, C.-H.; Tsai, M.-L.; Chou, H.-H., Design and Synthesis of Cycloplatinated Polymer Dots as Photocatalysts for Visible-Light-Driven Hydrogen Evolution. ACS Catalysis 2018, 8 (9), 7766-7772.
38.Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A., A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679.
39.Kolhe, N. B.; Lee, H.; Kuzuhara, D.; Yoshimoto, N.; Koganezawa, T.; Jenekhe, S. A., All-Polymer Solar Cells with 9.4% Efficiency from Naphthalene Diimide-Biselenophene Copolymer Acceptor. Chemistry of Materials 2018, 30 (18), 6540-6548.
40.An, C.; Makowska, H.; Hu, B.; Duan, R.; Pisula, W.; Marszalek, T.; Baumgarten, M., Effect of fluorination of naphthalene diimide–benzothiadiazole copolymers on ambipolar behavior in field-effect transistors. RSC Advances 2018, 8 (30), 16464-16469.
41.Hu, Y.; Li, Z.; Jiang, L.; Chen, Z.; Liao, L.; Wang, E., Correlation of Molecular Structure and Charge Transport Properties: A Case Study in Naphthalenediimide–Based Copolymer Semiconductors. Advanced Electronic Materials 2018, 4 (8), 1800203.
42.Lu, X.; Zhu, W.; Xie, Y.; Li, X.; Gao, Y.; Li, F.; Tian, H., Near-IR Core-Substituted Naphthalenediimide Fluorescent Chemosensors for Zinc Ions: Ligand Effects on PET and ICT Channels. 2010, 16 (28), 8355-8364.
43.Wang, L.; Wan, Y.; Ding, Y.; Wu, S.; Zhang, Y.; Zhang, X.; Zhang, G.; Xiong, Y.; Wu, X.; Yang, J.; Xu, H., Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light. Advanced Materials 2017, 29 (38), 1702428.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7250-
dc.description.abstract發展可利用之再生能源是近年來相當受重視之研究題材,其中共軛高分子於光催化產氫之研究引起眾多學者之注意,由於氫氣被認為是極具發展潛力之再生能源,不僅不會產生對環境有害之副產物,還可將其利用於燃料電池發電亦可作為工業原料使用。於此篇論文中,我們使用萘雙亞醯胺與一系列電子予體,如聯苯、雙噻吩和具不同數量三鍵取代基之苯環進行聚合,得到P1-P5聚合物,另外亦使用芴單元合成出P6及SPF系列之聚合物,並將其作為光觸媒利用於產氫之研究,我們所合成出之聚合物的確具有產氫之功用,其中P2展現最佳之產氫效率1.70 μmol g−1 h−1。此外我們亦合成具水相官能基之P7及SPF1,指出藉由合成水相官能基可有效提升產氫效率。此外,有機光觸媒亦可用於混摻無機光觸媒,改善無機光觸媒吸收較偏紫外光之缺點,進而提升產氫效率。最後我們將產氫反應後之溶液進行質譜儀量測,透過分析反應後之產物,期望能一窺產氫機制的奧秘。zh_TW
dc.description.abstractMuch research effort has been devoted to the field of renewable energy. Recently, photo-induced hydrogen evolution catalyzed by conjugated polymers has attracted research attention. On account of fact that hydrogen is considered a clean energy source, it can not only be applied to the fuel cell, but also be used as industrial materials. Herein, naphthalene diimide (NDI) was polymerized with various electron donors, such as biphenyl, bithiophene, and ethynylbenzene, respectively, through Stille or Sonorgashira coupling to furnish P1 to P5. Furthermore, fluorene was also utilized in the polymerization to afford P6 and SPF. All polymers were found to be active in the photo-induced hydrogen evolution reaction. P2 exhibited a highest hydrogen evolution rate (HER) of 1.70 μmol g−1 h−1 among these photocatalysts. P6 and SPF were functionalized with hydrophilic moieties to give P7 and SPF1, resulting in higher HERs. Moreover, synthesized polymers were blend with inorganic photocatalysts and improved HERs were observed. Last but not least, a mixture subsequent to the hydrogen evolution reaction was analyzed by mass spectrometry, revealing the possible working principles for the photo-induced hydrogen evolution.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:36Z (GMT). No. of bitstreams: 1
ntu-108-R06549013-1.pdf: 10706552 bytes, checksum: f0409250e0466c289a24eb4966c0de65 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents第1章 緒論 1
1-1光催化產氫 1
1-2有機高分子材料於產氫之應用 5
第2章 結果與討論 33
2-1 氫氣之定量 33
2-2 背景實驗 33
2-3 NDI衍生物之合成及結構鑑定 34
2-4 NDI衍生物之吸收光譜、能階及產氫效率比較 45
2-5 Fluorene 系統之高分子 52
2-6 有機材料與無機材料之混摻系統 55
2-7 利用質譜儀研究犧牲劑之反應 58
第3章 結論 62
第4章 實驗 65
4-1 試藥 65
4-2 實驗儀器 65
4-3 光催化產氫之實驗 67
4-4有機及無機光觸媒之混摻 68
4-5 合成 69
第5章 參考文獻 81
第6章 附錄 88
dc.language.isozh-TW
dc.title萘雙亞醯胺衍生物於光催化產氫反應zh_TW
dc.titlePhoto-induced hydrogen evolution catalyzed by naphthalene diimide derivativesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王立義,劉沂欣,游文岳
dc.subject.keyword再生能源,光催化產氫,高分子,光觸媒,?雙亞醯胺,zh_TW
dc.subject.keywordRenewable energy,photo-induced hydrogen evolution,polymer,photocatalyst,naphthalene diimide,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201902451
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
dc.date.embargo-lift2024-08-14-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf10.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved