Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72502Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 盧中仁(Chung-Jen Lu) | |
| dc.contributor.author | Yan-Ting Chen | en |
| dc.contributor.author | 陳彥珽 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:00:00Z | - |
| dc.date.available | 2019-08-18 | |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-02 | |
| dc.identifier.citation | [1] F. Ling, 'On asperity distributions of metallic surfaces,' Journal of Applied Physics, vol. 29, no. 8, pp. 1168-1174, 1958.
[2] K. Johnson, 'One hundred years of Hertz contact,' Proceedings of the Institution of Mechanical Engineers, vol. 196, no. 1, pp. 363-378, 1982. [3] J. Greenwood and J. P. Williamson, 'Contact of nominally flat surfaces,' Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 295, no. 1442, pp. 300-319, 1966. [4] J. Greenwood, 'A unified theory of surface roughness,' Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 393, no. 1804, pp. 133-157, 1984. [5] D. J. Whitehouse and J. Archard, 'The properties of random surfaces of significance in their contact,' Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 316, no. 1524, pp. 97-121, 1970. [6] W. Chang, I. Etsion, and D. B. Bogy, 'An elastic-plastic model for the contact of rough surfaces,' Journal of Tribology, vol. 109, no. 2, pp. 257-263, 1987. [7] Y. Zhao, D. M. Maietta, and L. Chang, 'An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,' Journal of Tribology, vol. 122, no. 1, pp. 86-93, 2000. [8] Y. Kadin, Y. Kligerman, and I. Etsion, 'Unloading an elastic–plastic contact of rough surfaces,' Journal of the Mechanics and Physics of Solids, vol. 54, no. 12, pp. 2652-2674, 2006. [9] Y. Xu, R. Jackson, and D. Marghitu, 'Statistical model of nearly complete elastic rough surface contact,' International Journal of Solids and Structures, vol. 51, no.5, pp. 1075-1088, 2014. [10] B. Mandelbrot, 'How long is the coast of Britain? Statistical self-similarity and fractional dimension,' Science, vol. 156, no. 3775, pp. 636-638, 1967. [11] A. Majumdar and B. Bhushan, 'Fractal model of elastic-plastic contact between rough surfaces,' Journal of Tribology, vol. 113, no. 1, pp. 1-11, 1991. [12] F. Borodich and A. Mosolov, 'Fractal roughness in contact problems,' Journal of Applied Mathematics and Mechanics, vol. 56, no. 5, pp. 681-690, 1992. [13] T. L. Warren and D. Krajcinovic, 'Fractal models of elastic-perfectly plastic contact of rough surfaces based on the Cantor set,' International Journal of Solids and Structures, vol. 32, no. 19, pp. 2907-2922, 1995. [14] T. Warren, A. Majumdar, and D. Krajcinovic, 'A fractal model for the rigid-perfectly plastic contact of rough surfaces,' Journal of Applied Mechanics, vol. 63, no. 1, pp. 47-54, 1996. [15] W. Yan and K. Komvopoulos, 'Contact analysis of elastic-plastic fractal surfaces,' Journal of Applied Physics, vol. 84, no. 7, pp. 3617-3624, 1998. [16] C.-J. Lu and M.-C. Kuo, 'Coefficients of restitution based on a fractal surface model,' ASME Journal of Applied Mechanics 70:, pp. 339-345, 2003. [17] Y. Morag and I. Etsion, 'Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces,' Wear, vol. 262, no. 5-6, pp. 624-629, 2007. [18] J. L. Liou and J. F. Lin, 'A modified fractal microcontact model developed for asperity heights with variable morphology parameters,' Wear, vol. 268, no. 1-2, pp. 133-144, 2010. [19] H. Koch, 'Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire,' Arkiv for Matematik, Astronomi och Fysik, vol. 1, pp.681-704, 1904. [20] K. J. Falconer, The Geometry of Fractal Sets. Cambridge university press, 1986. [21] F. Hausdorff, 'Dimension und äußeres Maß,' Mathematische Annalen, vol. 79, no. 1-2, pp. 157-179, 1918. [22] 葛世荣葛世荣 and 朱华朱华, 摩擦学的分形摩擦学的分形. 机械工业出版社机械工业出版社, 2005. [23] M. Ausloos and D. Berman, 'A multivariate Weierstrass–Mandelbrot function,' Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 400, no. 1819, pp. 331-350, 1985. [24] L. Kogut and I. Etsion, 'Elastic-plastic contact analysis of a sphere and a rigid flat,' Journal of Applied Mechanics, vol. 69, no. 5, pp. 657-662, 2002. [25] E. Abbott, 'Specifying surface quality,' Mech Eng, vol. 55, pp. 569-572, 1933. [26] B. B. Mandelbrot, The Fractal Geometry of Nature. WH freeman New York, 1983. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72502 | - |
| dc.description.abstract | 摩擦磨損普遍存在於機械工程中,影響機械和零件的壽命,若設計不當容易造成材料損耗及浪費, 工程中處處存在相接觸的表面, 而表面粗糙的形貌,是直接影響摩潤的根本原因,因此表面粗糙的接觸行為有其研究的必要性。
分形表面粗糙模型相較於傳統基於隨機分佈微凸體的統計模型具有和尺度無關的特性。然而在分析分形粗糙表面的接觸行為時,還是必須借助傳統微凸體分析的結果。明確的說,必需採用下列三種假設:( 1)二粗糙表面接觸等價於剛性平面和等價粗糙表面接觸;(2)分形粗糙表面的接觸行為等價於一餘弦波表面(3)最後為餘弦波微凸體的接觸行為等價於近似圓球。 本論文利用有限元素法檢驗上述三種假設。我們分別比較(i)不同性質球-球模型和彈性等價球 -剛性平面模型的接觸行為;(ii)不同幾何特徵餘弦波、等價球體分別和剛性平面的接觸行為;(iii)不同波長餘弦波表面、單一波長餘弦波表面分別和剛性平面的接觸行為。除了(iii)因數值方法困難沒有明確結果外,依據(i)(ii)的結果我們提出了這兩個假設成立的判準。 | zh_TW |
| dc.description.abstract | Friction and wear, which are ubiquitous in the field of mechanical engineering, affect the life and performance of machines. An improper design would result in significance waste of material. Friction and wear exist at all contact surfaces and are directly influenced by the surface topology of the contact surfaces. As a consequence, the study of contact behavior between rough surfaces is an important topic.
Compared to traditional statistical surface model, which treats the surface as the collection of randomly distributed asperities, a fractal surface model has the merit of being scale independent. However, the analysis of contact behavior of fractal surfaces cannot be performed without using the results of traditional statistical surface model. Specifically, three basic assumptions are required as listed below: (1) The contact of two rough surfaces are equivalent to the contact of a rigid smooth surface and a rough surface. (2) The contact behavior of a fractal surface is approximately equal to a sinusoidal surface with a specified wave length. (3) The contact of a sinusoidal surface and a rigid flat surface is equivalent to the contact of a spherical asperity with a rigid flat surface. In this thesis, we examined the above three assumptions using a commercially available FEM package. We studied the contact behavior between (i) ball-ball and ball-flat rigid surface contact pairs; (ii) single-sinusoidal-surface-rigid flat surface and multiple-sinusoidal-surface-rigid flat surface contact pairs; (iii) single-sinusoidal-surface-rigid flat surface and ball-rigid flat surface contact pairs. Due to numerical difficulties, the study of case (ii) doesn’t generate conclusive results. On the basis of (i) and (iii), we proposed conditions under which assumptions (1) and (3) hold. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:00:00Z (GMT). No. of bitstreams: 1 ntu-108-R06522535-1.pdf: 3102663 bytes, checksum: 0f06c31e93622bcefe01fa3beadb3d91 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書 .............................................................................................................. i 致謝 ................................................................................................................................. ii 摘要 ............................................................................................................................... iii Abstract ........................................................................................................................... iv 目錄 ................................................................................................................................. v 圖目錄 ........................................................................................................................... vii 表目錄 ........................................................................................................................... vii 第一章 緒論 ................................................................................................................... 1 1.1引言 ................................................................................................................................... 1 1.2粗糙表面接觸研究進展 ................................................................................................... 2 1.2.1統計接觸模型 ............................................................................................................ 2 1.2.2分形接觸模型 ............................................................................................................ 4 1.3論文內容 ........................................................................................................................... 5 第二章 分形表面粗糙模型 ........................................................................................... 8 2.1分形理論起源 ................................................................................................................... 8 2.2分形(碎形)概述 ................................................................................................................ 9 2.2.1分形維數 .................................................................................................................. 10 2.2.2分形圖形 .................................................................................................................. 11 2.3分形表面模型 ................................................................................................................. 15 2.3.1二維分形粗糙表面 .................................................................................................. 16 2.3.2三維分形粗糙表面 .................................................................................................. 18 2.4分形粗糙表面接觸 ......................................................................................................... 20 2.4.1微凸體模型 .............................................................................................................. 21 2.5微凸體變形機制 ............................................................................................................. 24 2.5.1彈性變形 .................................................................................................................. 24 2.5.2彈塑性變形 .............................................................................................................. 27 2.5.3 完全塑性變形 .......................................................................................................... 29 2.6 分形粗糙表面接觸分析 ................................................................................................. 29 第三章 粗糙表面接觸非彈性變形等價關係 ............................................................. 31 3.1 有限元素模型 ................................................................................................................. 31 3.2 ANSYS 模擬準確性 ....................................................................................................... 34 3.2.1 前處理 ...................................................................................................................... 34 3.2.2 Hertz 彈性模擬結果 ................................................................................................ 36 3.3 塑性等價模擬 ................................................................................................................. 40 3.3.1 相等降伏強度 .......................................................................................................... 40 3.3.2 等價降伏強度 .......................................................................................................... 45 3.3.3 較低降伏強度相同,降伏比不同 .......................................................................... 50 3.3.4 較低降伏強度、降伏比相同 .................................................................................. 63 3.3.5 結論 .......................................................................................................................... 71 第四章 分形微凸體近似圓球準確性 ......................................................................... 73 4.1 有限元素模型 ................................................................................................................. 73 4.1.1 粗糙表面基底深度影響 .......................................................................................... 76 4.2 餘弦波、近似圓球和剛體相接觸 ................................................................................. 78 4.2.1 彈性變形 .................................................................................................................. 78 4.2.2 塑性變形 .................................................................................................................. 81 4.2.3 分形模型的微凸體的 值 ..................................................................................... 86 4.2.4 結論 .......................................................................................................................... 87 第五章 結論與未來研究展望 ..................................................................................... 89 5.1 結論 ................................................................................................................................. 89 5.2 未來研究展望 ................................................................................................................. 92 參考文獻 ....................................................................................................................... 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 分形 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 磨潤學 | zh_TW |
| dc.subject | 粗糙表面 | zh_TW |
| dc.subject | 碎形 | zh_TW |
| dc.subject | fractal | en |
| dc.subject | rough surface | en |
| dc.subject | tribology | en |
| dc.subject | finite element method | en |
| dc.title | 分形表面模型接觸力分析的基本假設 | zh_TW |
| dc.title | Basic assumptions for contact force of fractal surface models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃育熙(Yu-Hsi Huang),莊嘉揚(Jia-Yang Juang) | |
| dc.subject.keyword | 分形,碎形,粗糙表面,磨潤學,有限元素法, | zh_TW |
| dc.subject.keyword | fractal,rough surface,tribology,finite element method, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU201902389 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-108-1.pdf Restricted Access | 3.03 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
