請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72494完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟(Guo-Dung Su) | |
| dc.contributor.author | Chun-Yuan Fan | en |
| dc.contributor.author | 樊俊遠 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:59:53Z | - |
| dc.date.available | 2021-02-22 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2021-01-18 | |
| dc.identifier.citation | [1] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, 'Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,' Science, vol. 352, no. 6290, p. 1190, 2016, doi: 10.1126/science.aaf6644. [2] Hecht, Optics, 3rd Edition ed. New York: Addison-Wesley, 1998. [3] F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, 'Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,' Nano Lett, vol. 12, no. 3, pp. 1702-6, Mar 14 2012, doi: 10.1021/nl300204s. [4] H.-H. Hsiao, C. H. Chu, and D. P. Tsai, 'Fundamentals and Applications of Metasurfaces,' Small Methods, vol. 1, no. 4, 2017, doi: 10.1002/smtd.201600064. [5] Q. Jiang, G. Jin, and L. Cao, 'When metasurface meets hologram: principle and advances,' Advances in Optics and Photonics, vol. 11, no. 3, pp. 518-576, 2019/09/30 2019, doi: 10.1364/AOP.11.000518. [6] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, 'Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,' Nature communications, vol. 6, no. 1, pp. 1-6, 2015. [7] M. Khorasaninejad and F. Capasso, 'Metalenses: Versatile multifunctional photonic components,' Science, vol. 358, no. 6367, Dec 1 2017, doi: 10.1126/science.aam8100. [8] S.-C. Jiang et al., 'High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,' Physical Review B, vol. 91, no. 12, p. 125421, 2015. [9] R. Pestourie, C. Pérez-Arancibia, Z. Lin, W. Shin, F. Capasso, and S. G. Johnson, 'Inverse design of large-area metasurfaces,' Optics Express, vol. 26, no. 26, pp. 33732-33747, 2018/12/24 2018, doi: 10.1364/OE.26.033732. [10] A. Oskooi, S. G. Johnson, and A. Taflove, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology. Artech house, 2013. [11] A. Taflove and S. C. Hagness, Computational electromagnetics: the finite-difference time-domain method (Artech House, Boston). 1995, pp. 149-161. [12] S. D. Gedney, 'Introduction to the finite-difference time-domain (FDTD) method for electromagnetics,' Synthesis Lectures on Computational Electromagnetics, vol. 6, no. 1, pp. 1-250, 2011. [13] B. Gallinet, J. Butet, and O. J. F. Martin, 'Numerical methods for nanophotonics: standard problems and future challenges,' Laser Photonics Reviews, vol. 9, no. 6, pp. 577-603, 2015, doi: 10.1002/lpor.201500122. [14] J. B. Schneider, Understanding the Finite-Difference Time-Domain Method. 2015. [15] D. Smith, D. Vier, T. Koschny, and C. Soukoulis, 'Electromagnetic parameter retrieval from inhomogeneous metamaterials,' Physical review E, vol. 71, no. 3, p. 036617, 2005. [16] Z. Szabo, G.-H. Park, R. Hedge, and E.-P. Li, 'A unique extraction of metamaterial parameters based on Kramers–Kronig relationship,' IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 10, pp. 2646-2653, 2010. [17] H. Ren and S.-T. Wu, 'Variable-focus liquid lens by changing aperture,' Applied Physics Letters - APPL PHYS LETT, vol. 86, 05/23 2005, doi: 10.1063/1.1935749. [18] C. W. Fowler and E. S. Pateras, 'Liquid crystal lens review,' Ophthalmic and Physiological Optics, vol. 10, no. 2, pp. 186-194, 1990/04/01 1990, doi: 10.1111/j.1475-1313.1990.tb00974.x. [19] S. Kuiper and B. H. W. Hendriks, 'Variable-focus liquid lens for miniature cameras,' Applied Physics Letters, vol. 85, no. 7, pp. 1128-1130, 2004, doi: 10.1063/1.1779954. [20] N. Sugiura and S. Morita, 'Variable-focus liquid-filled optical lens,' Appl. Opt., vol. 32, no. 22, pp. 4181-4186, 1993/08/01 1993, doi: 10.1364/AO.32.004181. [21] G. Beni and S. Hackwood, 'Electro‐wetting displays,' Applied Physics Letters, vol. 38, no. 4, pp. 207-209, 1981, doi: 10.1063/1.92322. [22] H.-C. Lin, M.-S. Chen, and Y.-H. Lin, 'A Review of Electrically Tunable Focusing Liquid Crystal Lenses,' Transactions on Electrical and Electronic Materials, vol. 12, 12/25 2011, doi: 10.4313/TEEM.2011.12.6.234. [23] Y.-H. Lin et al., 'Electrically tunable wettability of liquid crystal/polymer composite films,' Optics Express, vol. 16, pp. 17591-17598, 10/27 2008, doi: 10.1364/OE.16.017591. [24] Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, 'Liquid crystal lenses with tunable focal length,' Liquid Crystals Reviews, vol. 5, no. 2, pp. 111-143, 2017/07/03 2017, doi: 10.1080/21680396.2018.1440256. [25] S. Sato, 'Applications of Liquid Crystals to Variable-Focusing Lenses,' Optical Review, vol. 6, no. 6, pp. 471-485, 1999/11/01 1999, doi: 10.1007/s10043-999-0471-z. [26] C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, 'Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,' Optics express, vol. 19, pp. 17402-7, 08/29 2011, doi: 10.1364/OE.19.017402. [27] Y. Li and S.-T. Wu, 'Polarization independent adaptive microlens with a blue-phase liquid crystal,' Optics Express, vol. 19, no. 9, pp. 8045-8050, 2011/04/25 2011, doi: 10.1364/OE.19.008045. [28] Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, 'Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,' Applied Physics Letters, vol. 96, no. 11, 2010, doi: 10.1063/1.3360860. [29] C. H. Gooch and H. A. Tarry, 'The optical properties of twisted nematic liquid crystal structures with twist angles ⩽90 degrees,' Journal of Physics D: Applied Physics, vol. 8, no. 13, pp. 1575-1584, 1975/09/11 1975, doi: 10.1088/0022-3727/8/13/020. [30] E. P. Raynes and I. A. Shanks, 'Fast-switching twisted nematic electro-optical shutter and colour filter,' Electronics Letters, vol. 10, no. 7, pp. 114-115, 1974, doi: 10.1049/el:19740088. [31] M. Schadt and W. Helfrich, 'Voltage‐Dependent Optical Activity of a Twisted Nematic Liquid Crystal,' Applied Physics Letters, vol. 18, no. 4, pp. 127-128, 1971, doi: 10.1063/1.1653593. [32] X. Chen et al., 'Longitudinal Multifoci Metalens for Circularly Polarized Light,' Advanced Optical Materials, vol. 3, no. 9, pp. 1201-1206, 2015, doi: 10.1002/adom.201500110. [33] W. Wang et al., 'Polarization-independent longitudinal multi-focusing metalens,' Optics Express, vol. 23, no. 23, pp. 29855-29866, 2015/11/16 2015, doi: 10.1364/OE.23.029855. [34] H. S. Ee and R. Agarwal, 'Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,' Nano Lett, vol. 16, no. 4, pp. 2818-23, Apr 13 2016, doi: 10.1021/acs.nanolett.6b00618. [35] S. Colburn, A. Zhan, and A. Majumdar, 'Varifocal zoom imaging with large area focal length adjustable metalenses,' Optica, vol. 5, no. 7, pp. 825-831, 2018/07/20 2018, doi: 10.1364/OPTICA.5.000825. [36] R. Fu et al., 'Reconfigurable step-zoom metalens without optical and mechanical compensations,' Opt Express, vol. 27, no. 9, pp. 12221-12230, Apr 29 2019, doi: 10.1364/OE.27.012221. [37] S. Tian, H. Guo, J. Hu, and S. Zhuang, 'Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency,' Opt Express, vol. 27, no. 2, pp. 680-688, Jan 21 2019, doi: 10.1364/OE.27.000680. [38] O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, 'Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,' Opt. Express, vol. 21, pp. 1633-1638, 2013. [39] O. Buchnev, N. Podoliak, and V. A. Fedotov, 'Liquid crystal-filled meta-pixel with switchable asymmetric reflectance and transmittance,' Journal of Molecular Liquids, vol. 267, pp. 411-414, 2018, doi: 10.1016/j.molliq.2017.12.118. [40] M. Decker et al., 'Electro-optical switching by liquid-crystal controlled metasurfaces,' Optics Express, vol. 21, no. 7, pp. 8879-8885, 2013/04/08 2013, doi: 10.1364/OE.21.008879. [41] F. Aieta et al., 'Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,' Nano Lett, vol. 12, no. 9, pp. 4932-6, Sep 12 2012, doi: 10.1021/nl302516v. [42] J. Cheng, S. Inampudi, and H. Mosallaei, 'Optimization-based Dielectric Metasurfaces for Angle-Selective Multifunctional Beam Deflection,' Sci Rep, vol. 7, no. 1, p. 12228, Sep 25 2017, doi: 10.1038/s41598-017-12541-x. [43] L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. Ruan, and S. Fan, 'Phase front design with metallic pillar arrays,' Opt. Lett., vol. 35, no. 6, pp. 844-846, 2010. [44] M. Khorasaninejad et al., 'Polarization-Insensitive Metalenses at Visible Wavelengths,' Nano Letters, vol. 16, no. 11, pp. 7229-7234, 2016/11/09 2016, doi: 10.1021/acs.nanolett.6b03626. [45] P. Ramachandran and G. Varoquaux, 'Mayavi: 3D Visualization of Scientific Data,' Computing in Science Engineering, vol. 13, pp. 40-51, 05/01 2011, doi: 10.1109/MCSE.2011.35. [46] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, 'Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,' Nat Commun, vol. 6, p. 7069, May 7 2015, doi: 10.1038/ncomms8069. [47] L. Yaoyao et al., 'High-Efficiency, Near-Diffraction Limited, Dielectric Metasurface Lenses Based on Crystalline Titanium Dioxide at Visible Wavelengths,' Nanomaterials, vol. 8, p. 288, 04/28 2018, doi: 10.3390/nano8050288. [48] W. Liu et al., 'Metasurface Enabled Wide-Angle Fourier Lens,' Adv Mater, vol. 30, no. 23, p. e1706368, Jun 2018, doi: 10.1002/adma.201706368. [49] Y. Yamamoto and W. R. Jeffery, 'Central role for the lens in cave fish eye degeneration,' Science, vol. 289, no. 5479, pp. 631-633, 2000. [50] W. Yuan, L.-H. Li, W.-B. Lee, and C.-Y. Chan, 'Fabrication of Microlens Array and Its Application: A Review,' Chinese Journal of Mechanical Engineering, vol. 31, no. 1, p. 16, 2018/02/27 2018, doi: 10.1186/s10033-018-0204-y. [51] H. J. Tiziani and H.-M. Uhde, 'Three-dimensional analysis by a microlens-array confocal arrangement,' Appl. Opt., vol. 33, no. 4, pp. 567-572, 1994. [52] U. C. Boettiger and J. Li, 'Controlling lens shape in a microlens array,' ed: Google Patents, 2006. [53] W.-L. Liang, J.-G. Pan, and G.-D. J. Su, 'One-lens camera using a biologically based artificial compound eye with multiple focal lengths,' Optica, vol. 6, no. 3, pp. 326-334, 2019/03/20 2019, doi: 10.1364/OPTICA.6.000326. [54] B. Groever, W. T. Chen, and F. Capasso, 'Meta-Lens Doublet in the Visible Region,' Nano Lett, vol. 17, no. 8, pp. 4902-4907, Aug 9 2017, doi: 10.1021/acs.nanolett.7b01888. [55] A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, 'Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,' Nat Commun, vol. 7, p. 13682, Nov 28 2016, doi: 10.1038/ncomms13682. [56] J. Engelberg, C. Zhou, N. Mazurski, J. Bar-David, A. Kristensen, and U. Levy, 'Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications,' Nanophotonics, vol. 9, no. 2, pp. 361-370, 2020. [57] M. Y. Shalaginov et al., 'A single-layer panoramic metalens with> 170 {\deg} diffraction-limited field of view,' arXiv preprint arXiv:1908.03626, 2019. [58] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, 'Dielectric gradient metasurface optical elements,' Science, vol. 345, no. 6194, pp. 298-302, Jul 18 2014, doi: 10.1126/science.1253213. [59] A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, 'Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,' Nat Nanotechnol, vol. 10, no. 11, pp. 937-43, Nov 2015, doi: 10.1038/nnano.2015.186. [60] Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, and X. Luo, 'High-Efficiency and Wide-Angle Beam Steering Based on Catenary Optical Fields in Ultrathin Metalens,' Advanced Optical Materials, vol. 6, no. 19, 2018, doi: 10.1002/adom.201800592. [61] Y. Zhou, R. Chen, and Y. Ma, 'Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens,' Applied Sciences (Switzerland), vol. 8, 02/26 2018, doi: 10.3390/app8030321. [62] H. Zuo et al., 'High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,' Advanced Optical Materials, vol. 5, no. 23, 2017, doi: 10.1002/adom.201700585. [63] W. T. Chen et al., 'A broadband achromatic metalens for focusing and imaging in the visible,' Nat Nanotechnol, vol. 13, no. 3, pp. 220-226, Mar 2018, doi: 10.1038/s41565-017-0034-6. [64] W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, 'A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,' Nat Commun, vol. 10, no. 1, p. 355, Jan 21 2019, doi: 10.1038/s41467-019-08305-y. [65] K. Li et al., 'Dispersion controlling meta-lens at visible frequency,' Optics Express, vol. 25, no. 18, pp. 21419-21427, 2017. [66] S. Wang et al., 'Broadband achromatic optical metasurface devices,' Nature communications, vol. 8, no. 1, pp. 1-9, 2017. [67] S. Wang et al., 'A broadband achromatic metalens in the visible,' Nature nanotechnology, vol. 13, no. 3, pp. 227-232, 2018. [68] L. Chen, J. Shakya, and M. Lipson, 'Subwavelength confinement in an integrated metal slot waveguide on silicon,' Opt. Lett., vol. 31, no. 14, pp. 2133-2135, 2006. [69] T. Phan et al., 'High-efficiency, large-area, topology-optimized metasurfaces,' Light Sci Appl, vol. 8, p. 48, 2019, doi: 10.1038/s41377-019-0159-5. [70] H. Chung and O. D. Miller, 'High-NA achromatic metalenses by inverse design,' Opt Express, vol. 28, no. 5, pp. 6945-6965, Mar 2 2020, doi: 10.1364/OE.385440. [71] N. Aage, E. Andreassen, B. S. Lazarov, and O. Sigmund, 'Giga-voxel computational morphogenesis for structural design,' Nature, vol. 550, no. 7674, pp. 84-86, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72494 | - |
| dc.description.abstract | 鏡片是在我們日常中被廣使用的元件,近年來,隨著製程技術以及電腦計算能力的發展,次波長結構組成的超穎介面得以實現。超穎介面是一種幾乎不存在於自然界的人造表面,通過許多次波長結構調製電磁波的相位、振幅以及偏振,能夠達到許多新穎的光學特性,超穎介面應用於成像光學我們廣泛稱之為超穎透鏡。在本論文中,吾人藉由時域有限差分(FDTD)、近遠場轉換(near-to-far-field transformation)以及實驗室開發的演算法,分別設計了三種不同應用的超穎透鏡,第一種是電控調製多焦超穎透鏡,我們結合扭曲向列型液晶(TN-LC),提出了能夠在次毫秒內切換焦點的變焦透鏡,第二種是六角形排列的超廣角超穎透鏡,我們結合光線追跡(ray tracing)的方式設計單片達到幾乎全景式的廣角透鏡,第三種是寬頻消色差超穎透鏡,藉由特別設計的超穎結構,我們能夠使用單個光學元件在可見光波段消除色差。我們模擬的結果顯示了相比於傳統透鏡以及傳統繞射原件,我們所設計的超穎透鏡有著相近於繞射極限的光學性能,並且擁有很大的潛力能夠應用於多光種學系統之中。在本論文的最後,我們介紹了像是反向設計(Inverse Design)等方法,能夠打破現有局部性週期假設的設計方法,並且改善超穎透鏡的性能。此方法在理論上有機會設計幾乎於完美的透鏡,進而達到真正意義上的超穎透鏡。 | zh_TW |
| dc.description.abstract | Lenses are widely used in our daily life. In recent years, with the development of fabrication and computer power, a metasurface composed of sub-wavelength structures has been realized. The metasurface, which does not exist in nature, manipulate the phase, amplitude and polarization of electromagnetic waves by many sub-wavelength structures. It can achieve novel optical characteristics. When the metasurface is applied to the imaging optics, we widely call it metalens. In this dissertation, I designed three metalenses for different applications by using finite difference time domain (FDTD), near-to-far-field transformation, and in-house algorithms. The first one is an electronically modulated multifocal metalens. We combined twisted nematic liquid crystal (TN-LC) to theoretically demonstrate a tunable lens that can switch different focal points in sub-milliseconds. The second is an ultra-wide-angle metalens in hexagonal arrangement. We combine ray tracing method to design a single metalens, which is almost panoramic wide-angle. The third type is a broadband achromatic metalens. By rigorously designing meta-structures, we correct chromatic aberration by a single lens at visible wavelengths. Compared to traditional lenses and traditional diffraction elements, our simulation results show that the designed metalenses have an optical performance that is close to the diffraction limit, and have potential to be used in several optical systems. At the end of this dissertation, we introduce some methods such as inverse design, which can break the local-periodicity assumptions of the unit-cell design approach and improve performance of metalens in the future. Such method has the possibility to design an almost perfect lens theoretically, and then achieve a true meaning for metalens. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:59:53Z (GMT). No. of bitstreams: 1 U0001-1401202117354800.pdf: 5717539 bytes, checksum: 13dad19d51abe367497446a435a7a038 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix Chapter 1 Introduction 1 1.1 Lens in Traditional Optics 1 1.2 Planar Metalens in Optics 2 Chapter 2 Principle of Metasurface 5 2.1 Generalized 3D Snell’s Law 5 2.2 Mechanism of Metasurface 9 2.2.1 Propagation Phase Type Metasurface 10 2.2.2 Geometric Phase Type Metasurface 11 Chapter 3 Simulation Methodology 14 3.1 Locally Periodic Approximation 14 3.2 Finite-Difference Time-Domain (FDTD) 16 3.3 Near to Far-field Transformation 22 3.4 Metamaterial S parameter extraction 24 Chapter 4 Metalenses with applications in imaging system 28 4.1 Electrically Modulated Varifocal Metalens 28 4.1.1 Simulation of Twisted nematic liquid crystals 33 4.1.2 Principle and Design of the metalens 35 4.1.3 Results and Discussion 40 4.2 Ultrawide-Angle Metalens in Hexagonal Arrangement 45 4.2.1 Ideal Phase Profile of wide-angle Metalens 47 4.2.2 Principle and Design of the Metalens 52 4.2.3 Results and Discussion 56 4.3 Broadband Achromatic Metalens in visible wavelengths 65 4.3.1 Ideal Phase Profile of broadband achromatic metalens 69 4.3.2 Principle and Design of Metalens 71 4.3.3 Results and Discussion 74 Chapter 5 Future Work 78 5.1 Inverse Design of Metasurface 78 5.2 Very-high-NA Freeform metalens 80 Chapter 6 Conclusion 83 REFERENCE 86 | |
| dc.language.iso | en | |
| dc.subject | 超穎透鏡 | zh_TW |
| dc.subject | 超穎介面 | zh_TW |
| dc.subject | 時域有限差分 | zh_TW |
| dc.subject | 光線追跡 | zh_TW |
| dc.subject | 反向設計 | zh_TW |
| dc.subject | 近遠場轉換 | zh_TW |
| dc.subject | 扭曲向列型液晶 | zh_TW |
| dc.subject | inverse design | en |
| dc.subject | metalens | en |
| dc.subject | finite difference time domain | en |
| dc.subject | near-to-far-field transformation | en |
| dc.subject | twisted nematic liquid crystal | en |
| dc.subject | ray tracing | en |
| dc.subject | metasurface | en |
| dc.title | 應用於可見光波長成像系統的超穎透鏡 | zh_TW |
| dc.title | Metalenses for imaging system applications in visible wavelengths | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-6970-2559 | |
| dc.contributor.oralexamcommittee | 吳忠幟(Chung-chih Wu),王倫(Lon Wang),黃定洧(Ding-wei Huang),梁瑋倫(Wei-Lun Liang) | |
| dc.subject.keyword | 超穎介面,超穎透鏡,時域有限差分,近遠場轉換,扭曲向列型液晶,光線追跡,反向設計, | zh_TW |
| dc.subject.keyword | metasurface,metalens,finite difference time domain,near-to-far-field transformation,twisted nematic liquid crystal,ray tracing,inverse design, | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU202100060 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-01-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1401202117354800.pdf 未授權公開取用 | 5.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
