Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72484
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平(Chang-Ping Yu)
dc.contributor.authorHsin-Yi Yehen
dc.contributor.author葉馨翊zh_TW
dc.date.accessioned2021-06-17T06:59:45Z-
dc.date.available2024-08-07
dc.date.copyright2019-08-07
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citationBoonchai, R., &Seo, G. (2015). Microalgae membrane photobioreactor for further removal of nitrogen and phosphorus from secondary sewage effluent. Korean Journal of Chemical Engineering, 32(10), 2047–2052.
Chen, W., Westerhoff, P., Leenheer, J. A., &Booksh, K. (2003). Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science and Technology, 37(24), 5701–5710.
Choi, H. J. (2014). Intensified Production of Microalgae and Removal of Nutrient Using a Microalgae Membrane Bioreactor (MMBR). Applied Biochemistry and Biotechnology, 175(4), 2195–2205.
Das, B., Chakrabarty, B., &Barkakati, P. (2016). Preparation and characterization of novel ceramic membranes for micro-filtration applications. Ceramics International, 42(13), 14326–14333.
Das, P., Lei, W., Sarah, S., &Philip, J. (2011). Bioresource Technology Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102(4), 3883–3887.
DellaGreca, M., Pinto, G., Pistillo, P., Pollio, A., Previtera, L., &Temussi, F. (2008). Biotransformation of ethinylestradiol by microalgae. Chemosphere, 70(11), 2047–2053.
Dong, Y., Chen, S., Zhang, X., Yang, J., Liu, X., &Meng, G. (2006). Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite. Journal of Membrane Science, 281(1–2), 592–599.
DuBois, M., Smith, F., Rebers, P. A., Gilles, K. A., &Hamilton, J. K. (2005). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356.
Flemming, H.-C., &Wingender, J. (2001). Relevance of microbial extracellular polymeric substances (EPSs) - Part I: Structural and ecological aspects. Water Science and Technology, 43(6), 1–8.
Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Feng, L. J., Liu, J. zhi, …Cai, H. wen. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55–61.
Ge, L., Deng, H., Wu, F., &Deng, N. (2009). Microalgae-promoted photodegradation of two endocrine disrupters in aqueous solutions. Journal of Chemical Technology and Biotechnology, 84(3), 331–336.
Guerin, M., Huntley, M. E., &Olaizola, M. (2003). Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology, 21(5), 210–216.
Guo, W., Ngo, H. H., &Li, J. (2012). A mini-review on membrane fouling. Bioresource Technology, 122, 27–34.
Henderson, R. K., Baker, A., Parsons, S. A., &Jefferson, B. (2008). Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 42(13), 3435–3445.
Hu, B., Zhou, W., Min, M., Du, Z., Chen, P., Ma, X., …Ruan, R. (2013). Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production. Applied Energy, 107, 255–263.
Jobling, S., vanAerle, R., Santos, E., Taylor, A., Brighty, G., Johnson, A., …Gross-Sorokin, M. (2005). Predicted Exposures to Steroid Estrogens in U.K. Rivers Correlate with Widespread Sexual Disruption in Wild Fish Populations. Environmental Health Perspectives, 114(Suppl 1), 32–39.
Joshi, J. B., Elias, C. B., &Patole, M. S. (1996). Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Chemical Engineering Journal and the Biochemical Engineering Journal, 62(2), 121–141.
Kumar, A., Yuan, X., Sahu, A. K., Ergas, S. J., VanLangenhove, H., &Dewulf, J. (2010). A hollow fiber membrane photo-bioreactor for CO2sequestration from combustion gas coupled with wastewater treatment: A process engineering approach. Journal of Chemical Technology and Biotechnology, 85(3), 387–394.
Lai, K. M., Scrimshaw, M. D., &Lester, J. N. (2002). Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris. Applied and Environmental Microbiology, 68(2), 859–864.
Lee, S. J., &Kim, J. H. (2014). Differential natural organic matter fouling ofceramic versus polymeric ultrafiltration membranes. Water Research, 48(1), 43–51.
Li, J., Yang, F., Liu, Y., Song, H., Li, D., &Cheng, F. (2012). Microbial community and biomass characteristics associated severe membrane fouling during start-up of a hybrid anoxic-oxic membrane bioreactor. Bioresource Technology, 103(1), 43–47.
Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B. Q., Hong, H., …Gao, W. (2014). A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 460, 110–125.
Liu, X., Wu, F., &Deng, N. (2004). Photoproduction of Hydroxyl Radicals in Aqueous Solution with Algae under High-Pressure Mercury Lamp. Environmental Science and Technology, 38(1), 296–299.
Low, S. L., Ong, S. L., &Ng, H. Y. (2016). Characterization of membrane fouling in submerged ceramic membrane photobioreactors fed with effluent from membrane bioreactors. Chemical Engineering Journal, 290, 91–102.
Luo, Y., Le-Clech, P., &Henderson, R. K. (2017). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425–437.
Marbelia, L., Bilad, M. R., Passaris, I., Discart, V., Vandamme, D., Beuckels, A., …Vankelecom, I. F. J. (2014). Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresource Technology, 163, 228–235.
Markou, G., Vandamme, D., &Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 65, 186–202.
Niu, X. Z., Liu, C., Gutierrez, L., &Croué, J. P. (2014). Photobleaching-induced changes in photosensitizing properties of dissolved organic matter. Water Research, 66, 140–148.
Park, J., Jin, H. F., Lim, B. R., Park, K. Y., &Lee, K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource Technology, 101(22), 8649–8657.
Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., &Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36.
Powell, N., Shilton, A. N., Pratt, S., &Chisti, Y. (2011). Luxury uptake of phosphorus by microalgae in waste stabilisation ponds. 3rd Young Researchers Conference (YRC06), 42(16), 5958–5962.
Rosenberger, S., Kubin, K., &Kraume, M. (2002). Filterability of activated sludge in membrane bioreactors. Desalination, 146(1–3), 373–379.
Tenorio, R., Fedders, A. C., Strathmann, T. J., &Guest, J. S. (2017). Impact of growth phases on photochemically produced reactive species in the extracellular matrix of algal cultivation systems. Environmental Science: Water Research and Technology, 3(6), 1095–1108.
Wang, Lei, Zhang, C., Wu, F., &Deng, N. (2007). Photodegradation of aniline in aqueous suspensions of microalgae. Journal of Photochemistry and Photobiology B: Biology, 87(1), 49–57.
Wang, Liang, Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., …Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162(4), 1174–1186.
Xu, M., Bernards, M., &Hu, Z. (2014). Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor. Bioresource Technology, 153, 383–387.
Xu, M., Li, P., Tang, T., &Hu, Z. (2015). Roles of SRT and HRT of an algal membrane bioreactor system with a tanks-in-series configuration for secondary wastewater effluent polishing. Ecological Engineering, 85, 257–264.
Xu, M., Xu, S., Bernards, M., &Hu, Z. (2016). Evaluation of High Density Algal Cultivation for Secondary Wastewater Polishing. Water Environment Research, 88(1), 47–53.
Yager, J. D. (2015). Mechanisms of estrogen carcinogenesis: The role of E2/E1-quinone metabolites suggests new approaches to preventive intervention - A review. Steroids, 99(Part A), 56–60.
Zhang, Yan, Tang, C. Y., &Li, G. (2012). The role of hydrodynamic conditions and pH on algal-rich water fouling of ultrafiltration. Water Research, 46(15), 4783–4789.
Zhang, Yongli, Habteselassie, M. Y., Resurreccion, E. P., Mantripragada, V., Peng, S., Bauer, S., &Colosi, L. M. (2014). Evaluating removal of steroid estrogens by a model alga as a possible sustainability benefit of hypothetical integrated algae cultivation and wastewater treatment systems. ACS Sustainable Chemistry and Engineering, 2(11), 2544–2553.
Zhen-Feng, S., Xin, L., Hong-Ying, H., Yin-Hu, W., &Tsutomu, N. (2011). Culture of Scenedesmus sp. LX1 in the modified effluent of a wastewater treatment plant of an electric factory by photo-membrane bioreactor. Bioresource Technology, 102(17), 7627–7632.
謝宗旻. (2018). 以陶瓷膜應用於微藻膜生物反應槽去除廢水中之氮磷營養鹽. 臺灣大學環境工程學研究所學位論文, 1-104.
張碩恩. (2016). 同步分析雌酮雌二醇之蛋白質胼合物與尿液中塑化劑之相關性分析. 中興大學環境工程學系所學位論文, 1-86.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72484-
dc.description.abstract本研究的主題是將傳統培養藻類的光生物反應器結合陶瓷膜而形成的微藻膜生物反應槽,觀察其對於廢水中氮磷營養鹽與雌激素的去除效果;利用薄膜生物反應槽能在過濾水的同時將生物質截留於反應槽中的特性,使得系統內累積的生物質濃度能比傳統連續流的生物培養系統高許多而達到在短時間內處理更大量廢水的目的,同時以藻類為基礎的薄膜生物反應槽在操作時所廢棄的高濃度藻液也有許多再利用的潛力。本研究使用人工二級廢水來模擬污水出處理廠的二級廢水,此類廢水有機物含量低但仍有許多氮磷營養鹽及微量的新興污染物,藉由長時間的操作觀察微藻膜生物反應槽對於氮磷營養鹽的去除效果,並加入類固醇雌激素這類新興污染物觀察其在反應槽中的濃度變化。
在批次實驗中假設雌激素在培養藻類的環境中有四種可能的去除途徑,分別為直接光降解、藻類代謝所引發的生物轉化、藻類有機物質(AOM)誘發的光降解反應及藻類生物質的吸附現象。實驗結果得到雌激素本身不會在可見光條件下被破壞,且在ppm等級的濃度下對於生物質也無明顯的吸附現象發生。其主要的去除途徑以生物轉化與AOM誘發的光降解。在生物轉化與光降解的綜合批次試驗中羊角月牙藻的去除效果最為明顯,在實驗週期最後一天時E2與EE2的殘留率為8.76 ± 4.29%和16.54 ± 6.16%;而單純AOM誘發的光降解去除以小球藻效率最好,在經過一天的反應即測不到雌激素。
在連續流的微藻膜生物反應槽試驗中,系統穩定時氮營養鹽去除率最高來到63%,而系統對於磷只有在反應槽建設初期有看到明顯去除效果;雌激素E2與EE2最好去除率則分別來到41.2%與42.3%。利用螢光激發發射矩陣分析反應槽內有機物組成變化得知反應槽內有機物初期主要以芳香烴蛋白及代表微生物代謝產物的色胺酸為主,但到運行後期則漸漸轉為腐植酸與黃酸類物質。
zh_TW
dc.description.abstractAlgae-based membrane bioreactor(A-MBR) is a technique which combined traditional photobioreactor with membrane. The membrane can keep the microalgae in system effectively while filtration, and therefore, we can utilize high biomass concentration to remove pollutants in shorter time. The objective of this study is using ceramic membrane in A-MBR to remove the nitrogen and phosphorous nutrients and steroid estrogens.
In the estrogens removing batch test, there were four hypotheses about estrogen removal mechanisms by algae: 1. Algae-mediated biotransformation; 2. Direct-photolysis of estrogens; 3. Algae organic matter(AOM) mediated photolysis; 4. Algae biomass sorption. In results, estrogens wouldn’t be photolyzed by visible light and sorbed by algae biomass. In the comprehensive batch test of biotransformation and photodegradation, the removal effect of P. subcapitata was the most obvious. The residual rate of E2 and EE2 on the 7th day was 8.76 ± 4.29% and 16.54 ± 6.16%. The photodegradation removal induced by AOM of C. vulgaris was the most efficient, and estrogen was not detected after 24 hr reaction.
In A-MBR, the nitrogen removal rate was 63% when the system was stable, and the system has obvious removal effect on the phosphorus only in the initial stage of the reactor operation. The best removal rates of estrogen E2 and EE2 were 41.2% and 42.3%, respectively. Fluorescence excitation emission matrix(EEM) was used to analyze the composition of organic matter in the reactor. It was found that the organic matter in the reactor was consisted of aromatic protein and tryptophan which represents microbial metabolites in initial stage. But the composition of the organic matter in the reactor gradually changed to humic acid and fulvic acid in the later stage of operation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:59:45Z (GMT). No. of bitstreams: 1
ntu-108-R06541121-1.pdf: 4530525 bytes, checksum: e567289ec7410d8592c5b35736fb9f7b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 I
致謝 III
摘要 V
Abstract VI
目錄 IX
圖目錄 XII
表目錄 XVI
第一章 緒論 1
1.1 研究背景 1
1.2. 研究動機 2
1.3. 研究目的 3
第二章 文獻回顧 5
2.1. 微藻膜生物反應槽 5
2.1.1. 藻類對於氮磷營養鹽的去除 5
2.1.2. 微藻膜生物反應槽之構型與原理 7
2.1.3 A-MBR設計參數 9
2.2 類固醇雌激素與藻類代謝 11
2.2.1 類固醇雌激素毒性 11
2.2.2 藻類代謝類固醇雌激素 12
2.2.3 藻類胞外分泌光化學物質 14
2.3 薄膜 16
2.3.1. 薄膜介紹與應用 16
2.3.2. 陶瓷膜 18
2.3.3. 薄膜積垢 19
第三章 材料與方法 21
3.1 實驗藥品與設備 21
3.1.1. 實驗用藥品 21
3.1.2. 實驗室儀器與設備 23
3.2 實驗流程圖 25
3.3 微藻培養與計數測定 26
3.3.1. 藻種培養 26
3.3.2. 藻類定量片製作與細胞計數 28
3.4 實驗水質分析 30
3.4.1. 類固醇雌激素分析 30
3.4.2. 總有機碳與總氮定量分析 31
3.4.3. 多醣定量分析 31
3.4.4.蛋白質定量分析 32
3.4.5.水中磷酸鹽定量分析 32
3.4.6.水中懸浮固體物分析 33
3.4.7.螢光激發-發射矩陣(Fluorescence Excitation-Emission Matrix, EEM) 34
3.5類固醇雌激素降解批次試驗 35
3.6 微藻膜生物反應槽 37
3.6.1. 平板式陶瓷膜 37
3.6.2. 反應槽參數 38
第四章 結果與討論 41
4.1 類固醇雌激素去除批次試驗 41
4.1.1. 類固醇雌激素可見光降解試驗 41
4.1.2. 藻類誘發雌激素降解試驗 43
4.1.3. 藻類生物質對於雌激素光降解影響試驗 46
4.1.4. 藻類吸附試驗 49
4.1.5 藻類有機物質(AOM)誘發雌激素光降解試驗 52
4.1.6. 藻類上澄液性質 55
4.2 微藻膜生物反應槽 59
4.2.1 藻類生長曲線 59
4.2.2. A-MBR氮磷營養鹽去除 60
4.2.3. 薄膜積垢探討 62
4.2.4. A-MBR類固醇雌激素降解 65
4.2.5. A-MBR有機物組成變化 66
第五章 結論與建議 81
5.1 結論 81
5.2 建議 82
參考文獻 83
dc.language.isozh-TW
dc.subject陶瓷膜zh_TW
dc.subject類固醇雌激素zh_TW
dc.subject藻類有機物zh_TW
dc.subject微藻膜生物反應槽zh_TW
dc.subject光降解zh_TW
dc.subjectAlgae-based membrane bioreactoren
dc.subjectSteroid estrogensen
dc.subjectAlgae organic matteren
dc.subjectCeramic membraneen
dc.subjectPhotodegradationen
dc.title以平板式陶瓷膜應用於微藻膜生物反應槽去除廢水中氮磷營養鹽及內分泌干擾物質zh_TW
dc.titleApplying flat ceramic membrane in algae-based membrane bioreactor to remove nitrogen and phosphorous nutrients and EDCs from wastewateren
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江殷儒(Yin-Ru Chiang),郭獻文(Hsion-Wen Kuo)
dc.subject.keyword微藻膜生物反應槽,類固醇雌激素,藻類有機物,陶瓷膜,光降解,zh_TW
dc.subject.keywordAlgae-based membrane bioreactor,Steroid estrogens,Algae organic matter,Ceramic membrane,Photodegradation,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201901863
dc.rights.note有償授權
dc.date.accepted2019-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved