Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72455
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐陽明
dc.contributor.authorYu-Ju Tsaien
dc.contributor.author蔡侑儒zh_TW
dc.date.accessioned2021-06-17T06:59:24Z-
dc.date.available2020-08-05
dc.date.copyright2019-08-05
dc.date.issued2019
dc.date.submitted2019-08-05
dc.identifier.citation[1] E. H. Adelson and J. Y. A. Wang. Single lens stereo with a plenoptic camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):99–106,Feb 1992. 1
[2] A. Alperovich, O. Johannsen, M. Strecke, and B. Goldluecke. Light field intrinsics with a deep encoder-decoder network. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9145–9154, June 2018. 5, 12, 14
[3] R. C. Bolles, H. H. Baker, and D. H. Marimont. Epipolarplane image analysis: An approach to determining structure from motion. In INTERN..1. COMPUTER VISION, pages 1–7, 1987. 4
[4] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5410–5418,2018. 7, 8, 9, 10, 11
[5] C. Chen, H. Lin, Z. Yu, S. B. Kang, and J. Yu. Light field stereo matching using bilateral statistics of surface cameras. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 1518–1525, June 2014. 5
[6] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pages 43–54, New York, NY, USA, 1996. ACM. 4
[7] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9):1904–1916, Sep. 2015. 7, 8
[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, June 2016. 7
[9] S. Heber and T. Pock. Convolutional networks for shape from light field. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3746–3754, June 2016. 5
[10] S. Heber, W. Yu, and T. Pock. Neural epi-volume networks for shape from light field. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 2271–2279, Oct 2017. 5
[11] K. Honauer, O. Johannsen, D. Kondermann, and B. Goldluecke. A dataset and evaluation methodology for depth estimation on 4d light fields. In S.-H. Lai, V. Lepetit, K. Nishino, and Y. Sato, editors, Computer Vision – ACCV 2016, pages 19–34, Cham, 2017. Springer International Publishing. 12, 15
[12] Jingyi Yu, L. McMillan, and S. Gortler. Scam light field rendering. In 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings., pages 137–144, Oct 2002. 5
[13] O. Johannsen, A. Sulc, and B. Goldluecke. What sparse light field coding reveals about scene structure. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3262–3270, June 2016. 17
[14] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi. Learning-based view synthesis for light field cameras. ACM Trans. Graph., 35(6):193:1–193:10, Nov. 2016. 5
[15] A. Kendall, H. Martirosyan, S. Dasgupta, and P. Henry. End-to-end learning of geometry and context for deep stereo regression. pages 66–75, 10 2017. 7, 9, 10, 11
[16] J. Y. Lee and R. H. Park. Depth estimation from light field by accumulating binary maps based on foreground-background separation. IEEE Journal of Selected Topics in Signal Processing, 11(7):955–964, Oct 2017. 17
[17] M. Levoy and P. Hanrahan. Light field rendering. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pages 31–42, New York, NY, USA, 1996. ACM. 4
[18] C. Shin, H. Jeon, Y. Yoon, I. S. Kweon, and S. J. Kim. Epinet: A fully-convolutional neural network using epipolar geometry for depth from light field images. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4748–4757, June 2018. 5, 15, 17
[19] P. P. Srinivasan, T. Wang, A. Sreelal, R. Ramamoorthi, and R. Ng. Learning to synthesize a 4d rgbd light field from a single image. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 2262–2270, Oct 2017. 5
[20] M. W. Tao, S. Hadap, J. Malik, and R. Ramamoorthi. Depth from combining defocus and correspondence using light-field cameras. In 2013 IEEE International Conference on Computer Vision, pages 673–680, Dec 2013. 5
[21] T.-C. Wang, J.-Y. Zhu, E. Hiroaki, M. Chandraker, A. A. Efros, and R. Ramamoorthi. A 4d light-field dataset and cnn architectures for material recognition. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, Computer Vision – ECCV 2016, pages 121–138, Cham, 2016. Springer International Publishing. 5
[22] S. Wanner and B. Goldluecke. Globally consistent depth labeling of 4d light fields. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 41–48, June 2012. 4, 17
[23] S. Wanner and B. Goldluecke. Variational light field analysis for disparity estimation and super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3):606–619, March 2014. 4
[24] Wikipedia contributors. Gabriel lippmann — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Gabriel_Lippmann&oldid=879639602, 2019. [Online; accessed 15-May-2019]. 1
[25] Y. Yoon, H. Jeon, D. Yoo, J. Lee, and I. S. Kweon. Learning a deep convolutional network for light-field image super-resolution. In 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pages 57–65, Dec 2015. 5
[26] Y. Yoon, H. Jeon, D. Yoo, J. Lee, and I. S. Kweon. Light-field image super-resolution using convolutional neural network. IEEE Signal Processing Letters, 24(6):848–852, June 2017. 5
[27] Z. Yu, X. Guo, H. Ling, A. Lumsdaine, and J. Yu. Line assisted light field triangulation and stereo matching. In 2013 IEEE International Conference on Computer Vision, pages 2792–2799, Dec 2013. 5
[28] J. Zbontar and Y. LeCun. Stereo matching by training a convolutional neural network to compare image patches. Journal of Machine Learning Research, 17:1–32, 2016. 9
[29] S. Zhang, H. Sheng, C. Li, J. Zhang, and Z. Xiong. Robust depth estimation for light field via spinning parallelogram operator. Comput. Vis. Image Underst., 145(C):148–159, Apr. 2016. 4, 17
[30] Y. Zhang, H. Lv, Y. Liu, H. Wang, X. Wang, Q. Huang, X. Xiang, and Q. Dai. Lightfield depth estimation via epipolar plane image analysis and locally linear embedding.IEEE Transactions on Circuits and Systems for Video Technology, 27(4):739–747, April 2017. 4
[31] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6230–6239, July 2017. 8
[32] T. Zhong, X. Jin, L. Li, and Q. Dai. Light field image compression using depth-based cnn in intra prediction. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8564–8567, May 2019. 5
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72455-
dc.description.abstract在本論文中,我們使用深度學習來預測光場圖像的深度。光場相機可以同時拍攝一個場景的光線特性:包含空間以及角度。藉由拍攝到的這些資訊,我們可以去預估場景的深度。但是光場相機結構上圖像與圖像之間狹窄的baseline造成深度估計上面的困難,現在很多方法都想要解決這個硬體上面的限制,不過仍然需要在執行速度以及估計的準確率上面達到平衡。
因此,本論文考慮了光場圖像在資料上面的結構性以及圖像上的重複性,將這些特性的概念設計到我們的深度學習網路當中。再來我們提出了attention based sub-aperture view selection來讓網路自行學習哪一些圖像對於深度估計的貢獻是更大的,最後我們比較了在benchmark上和其他states of the art方法之間的比較,來顯示我們對於這個題目的改進。
zh_TW
dc.description.abstractIn this paper, we introduce a light field depth estimation method based on a convolutional neural network. Light field camera can capture the spatial and angular properties of light in a scene. By using this property, we can compute depth information from light field images. However, the narrow baseline in light-field cameras makes the depth estimation of light field difficult. Many approaches try to solve these limitations in the depth estimation of the light field, but there is some trade-off between the speed and the accuracy in these methods.
We consider the repetitive structure of the light field and redundant sub-aperture views in light field images. First, to utilize the repetitive structure of the light field, we integrate this property into our network design. Second, by applying attention based sub-aperture views selection, we can let the network learn more useful views by itself. Finally, we compare our experimental result with other states of the art methods to show our improvement in light field depth estimation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:59:24Z (GMT). No. of bitstreams: 1
ntu-108-R06922009-1.pdf: 47396740 bytes, checksum: 7c2e046af6fb7865c89276fed2d81e69 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝ii
摘要iii
Abstract iv
1 Introduction 1
2 Related Work 4
2.1 Traditional Methods 4
2.2 Deep Learning Methods 5
3 Method 7
3.1 Network Design 7
3.2 Feature Extraction and SPP module 8
3.3 Cost Volume Construction 9
3.4 Attention-based View Selection 9
3.5 3D CNN and Disparity Regression 10
4 Experiment 12
4.1 Training Dataset 12
4.1.1 4D Light Field Dataset 12
4.2 Implementation Detail 14
4.3 Quantitative Evaluation 15
4.4 Comparison to state-of-the-art methods 17
5 Conclusion 34
Bibliography 35
dc.language.isoen
dc.subject深度學習zh_TW
dc.subject光場zh_TW
dc.subject深度估計zh_TW
dc.subjectLight Fielden
dc.subjectDeep Neural Networken
dc.subjectDisparityen
dc.subjectDepthen
dc.title使用深度學習預測光場圖像深度分布zh_TW
dc.titleEstimate Disparity of Light Field Images by Deep Neural Networken
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊永裕,葉正聖
dc.subject.keyword光場,深度學習,深度估計,zh_TW
dc.subject.keywordLight Field,Deep Neural Network,Disparity,Depth,en
dc.relation.page39
dc.identifier.doi10.6342/NTU201900934
dc.rights.note有償授權
dc.date.accepted2019-08-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
46.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved