Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72435
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉(SHANG-LING LO)
dc.contributor.authorU-Cheong Cheongen
dc.contributor.author張宇翔zh_TW
dc.date.accessioned2021-06-17T06:42:27Z-
dc.date.available2023-08-18
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationAylmore, M. G., & Muir, D. M. (2001). Thiosulfate leaching of gold—a review. Minerals Engineering, 14(2), 135-174.
Balde, C. P., Forti, V., Gray, V., Kuehr, R., & Stegmann, P. (2017). The Global-E-waste Monitor 2017.
Balde, C. P., Wang, F., Kuehr, R., & Huisman, J. (2015). The global e-waste monitor 2014: Quantities, flows and resources.
Birloaga, I., De Michelis, I., Ferella, F., Buzatu, M., & Vegliò, F. (2013). Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Management, 33(4), 935-941.
Chang, J., Zhang, E.-d., Zhang, L.-b., Peng, J.-h., Zhou, J.-w., Srinivasakannan, C., & Yang, C.-j. (2017). A comparison of ultrasound-augmented and conventional leaching of silver from sintering dust using acidic thiourea. Ultrasonics Sonochemistry, 34, 222-231.
Chowdhury, P., & Viraraghavan, T. (2009). Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes – A review. Science of The Total Environment, 407(8), 2474-2492.
Dorin, R., & Woods, R. (1991). Determination of leaching rates of precious metals by electrochemical techniques. Journal of Applied Electrochemistry, 21(5), 419-424. doi:10.1007/bf01024578
Fleming, C. A., McMullen, J., Thomas, K. G., & Wells, J. A. (2003). Recent advances in the development of an alternative to the cyanidation process: Thiosulfate leaching and resin in pulp. Minerals and metallurgical processing, 20(1), 1-9.
Goosey, M., & Kellner, R. (2002). A Scoping Study: End-of-Life Printed Circuit Boards.
Grosse, A. C., Dicinoski, G. W., Shaw, M. J., & Haddad, P. R. (2003). Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review). Hydrometallurgy, 69(1), 1-21.
Guo, J., Guo, J., & Xu, Z. (2009). Recycling of non-metallic fractions from waste printed circuit boards: A review. Journal of Hazardous Materials, 168(2), 567-590.
Hilson, G., & Monhemius, A. J. (2006). Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production, 14(12), 1158-1167.
Jacob, J., Chia, L. H. L., & Boey, F. Y. C. (1995). Thermal and non-thermal interaction of microwave radiation with materials. Journal of Materials Science, 30(21), 5321-5327. doi:10.1007/bf00351541
Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., & Miles, N. J. (2002). Microwave heating applications in environmental engineering—a review. Resources, Conservation and Recycling, 34(2), 75-90.
Lee, J. Y., Kim, Y. J., & Lee, J. C. (2012). Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB). Journal of Hazardous Materials, 241-242, 387-394.
Leong, T., Ashokkumar, M., & Kentish, S. (2011). The fundamentals of power ultrasound-A review.
Morin, D., Lips, A., Pinches, T., Huisman, J., Frias, C., Norberg, A., & Forssberg, E. (2006). BioMinE – Integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy, 83(1), 69-76.
Muir, D. M., & Aylmore, M. G. (2004). Thiosulphate as an alternative to cyanide for gold processing–issues and impediments. Mineral Processing and Extractive Metallurgy, 113(1), 2-12.
Park, Y. J., & Fray, D. J. (2009). Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 164(2), 1152-1158.
Pilli, S., Bhunia, P., Yan, S., LeBlanc, R. J., Tyagi, R. D., & Surampalli, R. Y. (2011). Ultrasonic pretreatment of sludge: A review. Ultrasonics Sonochemistry, 18(1), 1-18.
Sathishkumar, P., Mangalaraja, R. V., & Anandan, S. (2016). Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants. Renewable and Sustainable Energy Reviews, 55, 426-454.
Sheng, P. P., & Etsell, T. H. (2007). Recovery of gold from computer circuit board scrap using aqua regia. Waste Management & Research, 25(4), 380-383. doi:10.1177/0734242x07076946
Sum, E. Y. L. (2005). Recovery of metals from electronic scrap. J. Miner. Met. Mater. Soc., 43, 53-61.
Syed, S. (2016). Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling. Waste Management, 50, 234-256.
Tuncuk, A., Stazi, V., Akcil, A., Yazici, E. Y., & Deveci, H. (2012). Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Minerals Engineering, 25(1), 28-37.
Verma, H. R., Singh, K. K., & Mankhand, T. R. (2017a). Comparative study of printed circuit board recycling by cracking of internal layers using organic solvents-dimethylformamide and dimethylacetamide. Journal of Cleaner Production, 142, 1721-1727.
Verma, H. R., Singh, K. K., & Mankhand, T. R. (2017b). Delamination mechanism study of large size waste printed circuit boards by using dimethylacetamide. Waste Management, 65, 139-146.
Verma, H. R., Singh, K. K., & Mankhand, T. R. (2017c). Liberation of metal clads of waste printed circuit boards by removal of halogenated epoxy resin substrate using dimethylacetamide. Waste Management, 60, 652-659.
Viramontes, G. G., Medina, N. M., & López, V. A. (2005). Fundamental considerations on the mechanisms of silver cementation onto zinc particles in the Merril–Crowe process. Journal of Colloid and Interface Science, 282(2), 408-414.
Wang, J. B., & Xu, Z. M. (2015). Disposing and Recycling Waste Printed Circuit Boards: Disconnecting, Resource Recovery, and Pollution Control. Environmental Science & Technology, 49(2), 721-733. doi:10.1021/es504833y
Wu, T. Y., Guo, N., Teh, C. Y., & Hay, J. X. W. (2013). Theory and Fundamentals of Ultrasound. In Advances in Ultrasound Technology for Environmental Remediation (pp. 5-12). Dordrecht: Springer Netherlands.
Xu, B., Kong, W., Li, Q., Yang, Y., Jiang, T., & Liu, X. (2017). A Review of Thiosulfate Leaching of Gold: Focus on Thiosulfate Consumption and Gold Recovery from Pregnant Solution. Metals, 7(6), 222.
Yamane, L. H., de Moraes, V. e. T., Espinosa, D. C. R., & Tenório, J. A. S. (2011). Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers. Waste Management, 31(12), 2553-2558.
Yang, T., Xu, Z., Wen, J., & Yang, L. (2009). Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy, 97(1), 29-32.
Yousef, S., Tatariants, M., Bendikiene, R., & Denafas, G. (2017). Mechanical and thermal characterizations of non-metallic components recycled from waste printed circuit boards. Journal of Cleaner Production, 167, 271-280.
陳孝行、張添晉主持,鍍鎳製程整合奈米薄膜電透析程序回收有價金屬之研發計畫,行政院環境保護署,2005 年,計畫編號:EPA-94-UIUI-04-005
潘孟暐,微波增進裂解廢棄印刷電路板,國立台灣大學環境工程學研究所碩士論文,2016
周思伶,利用微波裂解回收廢印刷電路板之貴金屬,國立台灣大學環境工程學研究所碩士論文,2017
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72435-
dc.description.abstract印刷電路板其成分複雜,當中包含金、銀、鈀等貴金屬,其他金屬如銅、鈣、錫等亦佔大多數。傳統的處理流程中常造成環境污染,危害人體健康。因此,如何有效和環保地回收當中的金屬成了最關注的問題。
本研究目的是利用微波裂解結合超聲波輔助濕式冶金法以較低的能耗去提高整體的回收效率。內容主要分為四個部分,第一部分為利用微波裂解對印刷電路板做前處理,以提高後續浸出程序之效率。第二部分以硫酸-過氧化氫系統酸浸除銅,以利後續貴金屬之溶出,並以電解法回收銅。第三部分使用硫代硫酸銨-氧氣系統輔以超聲波浸出貴金屬,再與傳統以硫代硫酸銨-硫酸銅-氨水系統作比較。第四部分是以過氧化氫使貴金屬離子沉澱分離,並與銅粉置換所得之結果作出比較。
研究結果表明,微波功率在333W裂解40分鐘能有效使印刷電路板裂解並分層,使酸浸時反應面積增加。在硫酸溶銅實驗中,以 1 M 硫酸加20ml過氧化氫,在固液比1:10下反應6小時,酸溶二次,銅有溶出率高達98%以上,電解後之總回收率為97.28%純度為99%。在硫代硫酸銨輔超聲波浸出實驗中,以0.2M硫代硫酸銨在超聲波功率300W;固液比1:40下反應1小時,金的溶出率為97.16%,銀則為100%。比傳統硫代硫酸銨-硫酸銅系統的最佳溶出率高出5%以上。最後使用過氧化氫作沉澱劑使金銀離子以固體方式沉澱回收,在pH=7時,金的回收率為94.58%,銀則為99.9%。整個實驗金回收率為91.89%,其純度8.26%,銀更逹99.73%,其純度67.71%,得到之沉澱物需再進行精鍊才可進一步使用。反觀銅粉置換法只能回收40.37%金和78.57%銀。
以超聲波輔助濕式冶金法回收貴金屬具良好的效果,在低污染以及高效益的回收流程中,減少傳統回收上的問題。
zh_TW
dc.description.abstractA printed circuit board is made up of many different elements, including gold, silver, copper and other metals, but its traditional treatment and recovery process often causes environmental pollution. Thus, effective and environmentally-friendly metal recycling has become the most concerned issue.
The aim of this research is to combine microwave pyrolysis and ultrasound augmented leaching to increase the overall recovery efficiency with low energy consumption. This study consists of four parts. The first part considers microwave-enhanced pyrolysis as a pretreatment to enhance metal recovery efficiency. The second part proposes removing copper in a mixture of sulfuric acid and hydrogen peroxide. The third part presents the leaching of precious metals by thiosulphate-oxygen system with ultrasound and the comparison with its conventional process. The last part reveals the precipitation of precious metals by using H2O2 and compares it to the outcome of copper powder substitution.
The results showed that printed circuit board can be stratified at 333W for 40 minutes in microwave pyrolysis. Over 98% of copper was removed during the leaching process by using 1M sulfuric acid with 20mL hydrogen peroxide, at a solid-liquid ratio of 1:10 for 6 hours, with two times of acid dissolutions. The total copper recovery rate after electrolysis was 97.28% and the purity was 99%. The leaching rate of 97.16% for gold, and 100% for silver, was achieved by using 0.2M thiosulphate with an ultrasound power of 300W, at a solid-liquid ratio of 1:40 for 1 hour. Compared with the conventional process, ultrasound-assisted leaching gave a 5% higher recovery efficiency. Finally, the leachate of gold and silver was precipitated by H2O2 oxidation process. The recovery rates of gold and silver were 94.58% and 99% at pH 7, respectively. The overall experimental recovery rate of gold was 91.89%, and of silver was 99.73%; their purity were 8.26% and 67.71%, respectively.
The use of ultrasonic-assisted metallurgy to recover precious metals is effective. With low-pollution and high-efficiency recycling process, it decreases the problems derived from traditional recycling methods.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:42:27Z (GMT). No. of bitstreams: 1
ntu-107-R05541134-1.pdf: 3500809 bytes, checksum: f86fe431e3aacf85a5b4409879a701ca (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents論文口試委員審定書 Ⅰ
謝誌 Ⅱ
中文摘要 Ⅲ
Abstract Ⅳ
目錄 Ⅵ
圖目錄 Ⅹ
表目錄 ⅩⅡ
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容 2
第二章 文獻回顧 4
2.1 電子廢棄物之現況 4
2.2 印刷電路板 6
2.2.1 印刷電路板之結構 6
2.2.2 印刷電路板中的非金屬成份 7
2.2.3 印刷電路板中的金屬成份 7
2.3 貴金屬之特性 8
2.4 傳統回收技術 9
2.5 現今回收技術 10
2.5.1 物理回收 11
2.5.2 化學回收 12
2.5.3 生物回收 12
2.6 金屬酸溶 13
2.7 貴金屬浸出 13
2.8 從浸出液中回收貴金 16
2.9 微波裂解之原理 20
2.10 超聲波之原理 21
第三章 材料與方法 25
3.1 實驗架構 25
3.2 實驗藥品 27
3.3 實驗設備 28
3.4 熱重分析儀 28
3.5 微波消化儀 29
3.6 感應耦合電漿原子發射光譜儀 30
3.7 微波裂解設備 31
3.8 超聲波設備 32
3.8 酸溶實驗 34
第四章 結果與討論 35
4.1 印刷電路板之基本性質 35
4.1.1 印刷電路板之熱重分析 35
4.1.2 印刷電路板之金屬成份分析 37
4.2 微波裂解印刷電路板 38
4.3 硫酸-過氧化氫對銅之溶出效果 42
4.3.1 硫酸濃度的影響 43
4.3.2 過氧化氫濃度的影響 44
4.4 硫代硫酸銨-氧氣-超聲波系統對貴金屬之溶出效果 45
4.4.1 硫代硫酸銨濃度的影響 46
4.4.2 超聲波功率的影響 47
4.4.3 固液比的影響 48
4.5 硫代硫酸銨-硫酸銅對貴金屬之溶出效果 49
4.5.1 固液比的影響 49
4.6 過氧化氫沉澱法分離貴金屬 50
4.6.1 pH的影響 51
4.7 電解與置換法 57
4.8 貴金屬回收之成果 58
第五章 結論與建議 59
5.1 結論 59
5.2 建議 60
參考文獻 61
附錄 67
dc.language.isozh-TW
dc.subject硫代硫酸銨溶金zh_TW
dc.subject超聲波增強zh_TW
dc.subject廢棄印刷電路板zh_TW
dc.subject微波裂解zh_TW
dc.subjectWaste Printed Circuit Boardsen
dc.subjectPrecious Metal Recoveryen
dc.subjectThiosulfate leachingen
dc.subjectUltrasound augmenteden
dc.title以超聲波增強浸出法回收廢棄印刷電路板中之貴金屬研究zh_TW
dc.titleUltrasound-Augmented Leaching of Precious Metals from Waste Printed Circuit Boardsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉雅瑄(YA-HSUAN LIOU),胡景堯(CHING-YAO HU)
dc.subject.keyword廢棄印刷電路板,微波裂解,硫代硫酸銨溶金,超聲波增強,zh_TW
dc.subject.keywordPrecious Metal Recovery,Waste Printed Circuit Boards,Thiosulfate leaching,Ultrasound augmented,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201803530
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved