Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72431
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 游景雲(Gene Jiing-Yun, You) | |
dc.contributor.author | Juei-Chia Hsu | en |
dc.contributor.author | 許瑞珈 | zh_TW |
dc.date.accessioned | 2021-06-17T06:42:12Z | - |
dc.date.available | 2020-08-16 | |
dc.date.copyright | 2018-08-16 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-15 | |
dc.identifier.citation | 1. Chen, P.-C., Wang, Y.-H., You, G. J.-Y., & Wei, C.-C. (2017). Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan. Journal of hydrology, 545, 197-211.
2. Deyle, E. R., Fogarty, M., Hsieh, C.-h., Kaufman, L., MacCall, A. D., Munch, S. B.,… Sugihara, G. (2013). Predicting climate effects on Pacific sardine. Proceedings of the National Academy of Sciences, 110(16), 6430-6435. 3. Hsieh, C.-h., Glaser, S. M., Lucas, A. J., & Sugihara, G. (2005). Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature, 435(7040), 336. 4. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Paper presented at the Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. 5. Kallache, M., Rust, H., & Kropp, J. (2005). Trend assessment: applications for hydrology and climate research. Nonlinear Processes in Geophysics, 12(2), 201-210. 6. Liu, Q., Yang, Z., & Cui, B. (2008). Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. Journal of hydrology, 361(3-4), 330-338. 7. Milly, P. C., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., & Stouffer, R. J. (2008). Stationarity is dead: Whither water management? Science, 319(5863), 573-574. 8. Milly, P. C. D., Wetherald, R. T., Dunne, K., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514. 9. Prairie, J. R., Rajagopalan, B., Fulp, T. J., & Zagona, E. A. (2006). Modified K-NN model for stochastic streamflow simulation. Journal of Hydrologic Engineering, 11(4), 371-378. 10. Strupczewski, W., & Feluch, W. (1997). System of identification of an optimum flood frequency model with time dependent parameters (IDT). In Integrated Approach to Environmental Data Management Systems (pp. 291-300): Springer. 11. Strupczewski, W., Singh, V., & Feluch, W. (2001). Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation. Journal of hydrology, 248(1-4), 123-142. 12. Strupczewski, W., Singh, V., & Mitosek, H. (2001). Non-stationary approach to at-site flood frequency modelling. III. Flood analysis of Polish rivers. Journal of hydrology, 248(1-4), 152-167. 13. Strupczewski, W. G., & Kaczmarek, Z. (2001). Non-stationary approach to at-site flood frequency modelling II. Weighted least squares estimation. Journal of hydrology, 248(1-4), 143-151. 14. Sugihara, G., & May, R. M. (1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344(6268), 734. 15. Rehman, N., Park, C., Huang, N. E., & Mandic, D. P. (2013). EMD via MEMD: multivariate noise-aided computation of standard EMD. Advances in Adaptive Data Analysis, 5(02), 1350007. 16. Wu, Z., & Huang, N. E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Paper presented at the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 17. Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(01), 1-41. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72431 | - |
dc.description.abstract | 在過去,我們假設降雨的統計特徵為非時變性,這個概念稱為定常性。但近年來由於氣候變化,我們現在面臨更加激烈和頻繁的極端水文事件,故定常性的假設已經不能符合實際的情況。因此,非定常性的概念就顯得越來越重要,並且需要仔細地重新相應的評估方法。
本研究分為水文頻率分析和降水模擬兩部分,兩者均利用非定常性概念來做進一步的探討。在第一部分中,本研究定義了每個單一事件及其相對應的特性,來分析台灣九個具代表性的氣象測站(基隆、臺北、新竹、臺中、臺南、高雄、恆春、花蓮以及臺東)的降水數據。基於分配與趨勢鑑定(Identification of Distribution and Trend, IDT)原則,採用總和經驗模態分解(Ensemble Empirical Mode Decomposition, EEMD)方法研究時間序列平均和變異性的值隨時間變化的趨勢。在第二部分中,以建立時間點和它們的時間延滯的多維空間來模擬未來的月降雨量,這個概念稱為簡型投影(Simplex projection)方法。此外,利用增加變異數來預測未來值並增加可變異性。 通過對第一部分的分析,我們發現總和經驗模態分解方法計算得到的趨勢充分證明了「短延時、強降雨」的特徵,並且幾乎所有測站都表現出明顯的非定常性;對於第二部分,增加變異數後的模擬值結果也顯示出較好的模擬結果。因此,通過頻率分析和預測降雨量,我們可以應用在水文風險的避免和施政方針、審查當前的管理政策和工程標準,並在水利工程中有更好的長期規劃。 | zh_TW |
dc.description.abstract | In the past, we assume that the statistical characteristics of rainfall no matter in the past or in the future were the same, this concept is called stationarity. However, because of climate change, we face more intense and frequent extreme hydrological events nowadays, the stationarity assumption may be inappropriate. Consequently, non-stationary situation becomes increasingly popular and corresponding assessment approaches need to be re-evaluated carefully.
This study is divided into two parts, hydrological frequency analysis and precipitation simulation, and both of which make use of the concept of non-stationary. For the first part, this study determines each single event and their properties to analyze the precipitation data from nine major stations in Taiwan. Based on the scheme of Identification of Distribution and Trend (IDT), the method of Ensemble Empirical Mode Decomposition (EEMD) is applied to explore the time variation of first and second statistical moments of time series. For the second part, multi-dimensional space of time points and their time lags are established to simulate the future monthly simulation, this concept is referred to as Simplex projection. Besides, by adding variables getting by modified K-NN method, we hope to increase the variability of exactly forecasting the future values. From the analysis of the first part, we find that the trends calculated by EEMD sufficiently demonstrate the characteristic of “short duration but high rainfall intensity”, and nearly all stations show obvious non-stationarity. For the second part, the combination usage of Simplex projection and modified K-NN method shows a better-fitting than the usage of Simplex projection alone. As a result, from the frequency analysis and future forecast, we can determine the hydrological risks, review the current management policies and engineering standards, and have a better long-term planning in hydraulic engineering. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:42:12Z (GMT). No. of bitstreams: 1 ntu-107-R05521317-1.pdf: 12386279 bytes, checksum: 511b6bef71d48e1b6378b60af07fc89a (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES xi LIST OF TABLES xxiii Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 2 Chapter 2 Literature Review 5 2.1 Hydrologic frequency analysis 5 2.1.1 Frequency analysis under non-stationary condition 6 2.1.2 Approaches of analyzing time series 8 2.2 Rainfall intensity simulation 10 Chapter 3 Hydrologic Non-Stationarity Analysis 13 3.1 Study area and data source 13 3.2 Methodology 16 3.2.1 Identification of distribution and trend (IDT) 16 3.2.2 The property of single precipitation event 18 3.2.3 Ensemble empirical mode decomposition (EEMD) 21 3.2.4 Akaike information criterion (AIC) 27 3.2.4.1 Extreme value type I distribution (EVI) 28 3.2.4.2 Lognormal distribution (LN) 30 3.2.4.3 Pearson type III distribution (PT3) 30 3.3 Results 32 3.3.1 Determination of non-stationarity or stationarity by hydrological analyses 32 3.3.2 Trends of mean and variance for defined precipitation characteristics 36 3.3.3 Sensitivity of stationarity or non-stationarity to sampling targets 47 3.3.4 Discussion of stationarity by comparing with previous studies 50 Chapter 4 Monthly Precipitation Simulation with Simplex projection 51 4.1 Study area and data source 51 4.2 Methodology 51 4.2.1 Simplex projection method 52 4.2.2 Modified K-NN method 55 4.2.3 Application of Simplex projection and modified K-NN method 57 4.3 Results 58 4.3.1 Correlations of prediction time P 59 4.3.2 Correlations of embedding dimension E 63 4.3.3 Simulation results 68 Chapter 5 Conclusions and Recommendations 77 5.1 Hydrologic frequency analysis under non-stationary condition 77 5.2 Rainfall intensity simulation using the combination of two methods 77 5.3 Recommendations 78 REFERENCES 80 APPENDIX: FIGURES 82 | |
dc.language.iso | en | |
dc.title | 事件基礎之降雨非定常性分析及簡型投影月雨量模擬 | zh_TW |
dc.title | The Analysis of Storm Event-based Non-stationarity and the Simulation of Monthly Precipitation by Simplex Projection | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳憲宗,陳佳正,胡明哲 | |
dc.subject.keyword | 非定常性,水文頻率分析,降雨模擬, | zh_TW |
dc.subject.keyword | Non-stationarity,Hydrologic frequency analysis,Simulation, | en |
dc.relation.page | 96 | |
dc.identifier.doi | 10.6342/NTU201803544 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
Appears in Collections: | 土木工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-107-1.pdf Restricted Access | 12.1 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.